180 research outputs found

    暗号要素技術の一般的構成を介した高い安全性・高度な機能を備えた暗号要素技術の構成

    Get PDF
    Recent years have witnessed an active research on cryptographic primitives with complex functionality beyond simple encryption or authentication. A cryptographic primitive is required to be proposed together with a formal model of its usage and a rigorous proof of security under that model.This approach has suffered from the two drawbacks: (1) security models are defined in a very specific manner for each primitive, which situation causes the relationship between these security models not to be very clear, and (2) no comprehensive ways to confirm that a formal model of security really captures every possible scenarios in practice.This research relaxes these two drawbacks by the following approach: (1) By observing the fact that a cryptographic primitive A should be crucial for constructing another primitive B, we identify an easy-to-understand approach for constructing various cryptographic primitives.(2) Consider a situation in which there are closely related cryptographic primitives A and B, and the primitive A has no known security requirement that corresponds to some wellknown security requirement (b) for the latter primitive B.We argue that this situation suggests that this unknown security requirement for A can capture some practical attack. This enables us to detect unknown threats for various cryptographic primitives that have been missed bythe current security models.Following this approach, we identify an overlooked security threat for a cryptographic primitive called group signature. Furthermore, we apply the methodology (2) to the “revocable”group signature and obtain a new extension of public-key encryption which allows to restrict a plaintext that can be securely encrypted.通常の暗号化や認証にとどまらず, 複雑な機能を備えた暗号要素技術の提案が活発になっている. 暗号要素技術の安全性は利用形態に応じて, セキュリティ上の脅威をモデル化して安全性要件を定め, 新方式はそれぞれ安全性定義を満たすことの証明と共に提案される.既存研究では, 次の問題があった: (1) 要素技術ごとに個別に安全性の定義を与えているため, 理論的な体系化が不十分であった. (2) 安全性定義が実用上の脅威を完全に捉えきれているかの検証が難しかった.本研究は上記の問題を次の考え方で解決する. (1) ある要素技術(A) を構成するには別の要素技術(B) を部品として用いることが不可欠であることに注目し, 各要素技術の安全性要件の関連を整理・体系化して, 新方式を見通し良く構成可能とする. (2) 要素技術(B)で考慮されていた安全性要件(b) に対応する要素技術(A) の安全性要件が未定義なら, それを(A) の新たな安全性要件(a) として定式化する. これにより未知の脅威の検出が容易になる.グループ署名と非対話開示機能付き公開鍵暗号という2 つの要素技術について上記の考え方を適用して, グループ署名について未知の脅威を指摘する.また, 証明書失効機能と呼ばれる拡張機能を持つグループ署名に上記の考え方を適用して, 公開鍵暗号についての新たな拡張機能である, 暗号化できる平文を制限できる公開鍵暗号の効率的な構成法を明らかにする.電気通信大学201

    Group Signatures with Message-Dependent Opening: Formal Definitions and Constructions

    Get PDF
    This paper introduces a new capability for group signatures called message-dependent opening. It is intended to weaken the high trust placed on the opener; i.e., no anonymity against the opener is provided by an ordinary group signature scheme. In a group signature scheme with message-dependent opening (GS-MDO), in addition to the opener, we set up an admitter that is not able to extract any user’s identity but admits the opener to open signatures by specifying messages where signatures on the specified messages will be opened by the opener. The opener cannot extract the signer’s identity from any signature whose corresponding message is not specified by the admitter. This paper presents formal definitions of GS-MDO and proposes a generic construction of it from identity-based encryption and adaptive non-interactive zero-knowledge proofs. Moreover, we propose two specific constructions, one in the standard model and one in the random oracle model. Our scheme in the standard model is an instantiation of our generic construction but the message-dependent opening property is bounded. In contrast, our scheme in the random oracle model is not a direct instantiation of our generic construction but is optimized to increase efficiency and achieves the unbounded message-dependent opening property. Furthermore, we also demonstrate that GS-MDO implies identity-based encryption, thus implying that identity-based encryption is essential for designing GS-MDO schemes

    Practical Dual-Receiver Encryption---Soundness, Complete Non-Malleability, and Applications

    Get PDF
    We reformalize and recast dual-receiver encryption (DRE) proposed in CCS \u2704, a public-key encryption (PKE) scheme for encrypting to two independent recipients in one shot. We start by defining the crucial soundness property for DRE, which ensures that two recipients will get the same decryption result. While conceptually simple, DRE with soundness turns out to be a powerful primitive for various goals for PKE, such as complete non-malleability (CNM) and plaintext-awareness (PA). We then construct practical DRE schemes without random oracles under the Bilinear Decisional Diffie-Hellman assumption, while prior approaches rely on random oracles or inefficient non-interactive zero-knowledge proofs. Finally, we investigate further applications or extensions of DRE, including DRE with CNM, combined use of DRE and PKE, strengthening two types of PKE schemes with plaintext equality test, off-the-record messaging with a stronger notion of deniability, etc

    Can a Public Blockchain Keep a Secret?

    Get PDF
    Blockchains are gaining traction and acceptance, not just for cryptocurrencies, but increasingly as an architecture for distributed computing. In this work we seek solutions that allow a \emph{public} blockchain to act as a trusted long-term repository of secret information: Our goal is to deposit a secret with the blockchain, specify how it is to be used (e.g., the conditions under which it is released), and have the blockchain keep the secret and use it only in the specified manner (e.g., release only it once the conditions are met). This simple functionality enables many powerful applications, including signing statements on behalf of the blockchain, using it as the control plane for a storage system, performing decentralized program-obfuscation-as-a-service, and many more. Using proactive secret sharing techniques, we present a scalable solution for implementing this functionality on a public blockchain, in the presence of a mobile adversary controlling a small minority of the participants. The main challenge is that, on the one hand, scalability requires that we use small committees to represent the entire system, but, on the other hand, a mobile adversary may be able to corrupt the entire committee if it is small. For this reason, existing proactive secret sharing solutions are either non-scalable or insecure in our setting. We approach this challenge via player replaceability , which ensures the committee is anonymous until after it performs its actions. Our main technical contribution is a system that allows sharing and re-sharing of secrets among the members of small dynamic committees, without knowing who they are until after they perform their actions and erase their secrets. Our solution handles a fully mobile adversary corrupting roughly 1/4 of the participants at any time, and is scalable in terms of both the number of parties and the number of time intervals

    Zone Encryption with Anonymous Authentication for V2V Communication

    Get PDF
    Vehicle-to-vehicle (V2V) communication systems are currently being prepared for real-world deployment, but they face strong opposition over privacy concerns. Position beacon messages are the main culprit, being broadcast in cleartext and pseudonymously signed up to 10 times per second. So far, no practical solutions have been proposed to en- crypt or anonymously authenticate V2V messages. We propose two cryptographic innovations that enhance the privacy of V2V communication. As a core contribution, we introduce zone-encryption schemes, where vehicles generate and authentically distribute encryption keys associated to static geographic zones close to their location. Zone encryption provides security against eavesdropping, and, combined with a suitable anonymous authentication scheme, ensures that messages can only be sent by genuine vehicles, while adding only 224 Bytes of cryptographic overhead to each message. Our second contribution is an authentication mechanism fine-tuned to the needs of V2V which allows vehicles to authentically distribute keys, and is called dynamic group signatures with attributes. Our instantiation features unlimited locally generated pseudonyms, negligible credential download-and-storage costs, identity recovery by a trusted authority, and compact signatures of 216 Bytes at a 128-bit security level

    Group Signatures and More from Isogenies and Lattices: Generic, Simple, and Efficient

    Get PDF
    We construct an efficient dynamic group signature (or more generally an accountable ring signature) from isogeny and lattice assumptions. Our group signature is based on a simple generic construction that can be instantiated by cryptographically hard group actions such as the CSIDH group action or an MLWE-based group action. The signature is of size O(logN)O(\log N), where NN is the number of users in the group. Our idea builds on the recent efficient OR-proof by Beullens, Katsumata, and Pintore (Asiacrypt\u2720), where we efficiently add a proof of valid ciphertext to their OR-proof and further show that the resulting non-interactive zero-knowledge proof system is online extractable. Our group signatures satisfy more ideal security properties compared to previously known constructions, while simultaneously having an attractive signature size. The signature size of our isogeny-based construction is an order of magnitude smaller than all previously known post-quantum group signatures (e.g., 6.6 KB for 64 members). In comparison, our lattice-based construction has a larger signature size (e.g., either 126 KB or 89 KB for 64 members depending on the satisfied security property). However, since the O()O(\cdot)-notation hides a very small constant factor, it remains small even for very large group sizes, say 2202^{20}

    Hecate: abuse reporting in secure messengers with sealed sender

    Full text link
    End-to-end encryption provides strong privacy protections to billions of people, but it also complicates efforts to moderate content that can seriously harm people. To address this concern, Tyagi et al. [CRYPTO 2019] introduced the concept of asymmetric message franking (AMF), which allows people to report abusive content to a moderator, while otherwise retaining end-to-end privacy by default and even compatibility with anonymous communication systems like Signal’s sealed sender. In this work, we provide a new construction for asymmetric message franking called Hecate that is faster, more secure, and introduces additional functionality compared to Tyagi et al. First, our construction uses fewer invocations of standardized crypto primitives and operates in the plain model. Second, on top of AMF’s accountability and deniability requirements, we also add forward and backward secrecy. Third, we combine AMF with source tracing, another approach to content moderation that has previously been considered only in the setting of non-anonymous networks. Source tracing allows for messages to be forwarded, and a report only identifies the original source who created a message. To provide anonymity for senders and forwarders, we introduce a model of "AMF with preprocessing" whereby every client authenticates with the moderator out-of-band to receive a token that they later consume when sending a message anonymously.CNS-1718135 - National Science Foundation; CNS-1801564 - National Science Foundation; OAC-1739000 - National Science Foundation; CNS-1931714 - National Science Foundation; CNS-1915763 - National Science Foundation; HR00112020021 - Department of Defense/DARPA; 000000000000000000000000000000000000000000000000000000037211 - SRI Internationalhttps://www.usenix.org/system/files/sec22-issa.pdfPublished versio

    Verifiable Encryption from MPC-in-the-Head

    Get PDF
    Verifiable encryption (VE) is a protocol where one can provide assurance that an encrypted plaintext satisfies certain properties. It is an important buiding block in cryptography with many useful applications, such as key escrow, group signatures, optimistic fair exchange, etc. However, a majority of previous VE schemes are restricted to instantiation with specific public-key encryption schemes or relations. In this work, we propose a novel framework that realizes VE protocols using the MPC-in-the-head zero-knowledge proof systems (Ishai et al. STOC 2007). Our generic compiler can turn a large class of MPC-in-the-head ZK proofs into secure VE protocols for any CPA secure public-key encryption (PKE) schemes with the undeniability property, a notion that essentially guarantees binding of encryption when used as a commitment scheme. Our framework is versatile: because the circuit proven by the MPC-in-the-head prover is decoupled from a complex encryption function, the prover’s work can be focused on proving properties (i.e. relation) about the encrypted data, not the proof of plaintext knowledge. Hence, our approach allows for instantiation with various combinations of properties about encrypted data and encryption functions. As concrete applications we describe new approaches to verifiably encrypting discrete logarithms in any prime order group and AES private keys

    Logarithmic-Size (Linkable) Threshold Ring Signatures in the Plain Model

    Get PDF
    Ring signatures are a cryptographic primitive that allow a signer to anonymously sign messages on behalf of an ad-hoc group of NN potential signers (the so-called ring). This primitive has attracted significant research since its introduction by Rivest et al. (ASIACRYPT\u2701), but until recently, no construction was known that was both (i) compact, i.e., the signature size is sub-linear in NN, and (ii) in the plain model, i.e., secure under standard hardness assumptions without requiring heuristic or setup assumptions. The first construction in this most desirable setting, where reducing trust in external parties is the primary goal, was only recently presented by Backes et al. (EUROCRYPT\u2719). An interesting generalization of ring signatures are tt-out-of-NN ring signatures for t1t\geq 1, also known as threshold ring (thring) signatures (Bresson et al., CRYPTO\u2702). For threshold ring signatures, non-linkable sub-linear-size constructions are not even known under heuristic or setup assumptions. In this work, we propose the first sub-linear thring signatures and prove them secure in the plain model. While our constructions are inspired by the template underlying the Backes et al. construction, they require novel ideas and techniques. Our scheme is non-interactive, and has strong inter-signer anonymity, meaning that signers do not need to know the other signers that participate in a threshold signing. We then present a linkable counterpart to our non-linkable construction. Our thring signatures can easily be adapted to achieve the recently introduced notions of flexibility (Okamoto et al., EPRINT\u2718) as well as claimability and repudiability (Park and Sealfon, CRYPTO\u2719). (Th)Ring signatures and, in particular, their linkable versions have recently drawn significant attention in the field of privacy-friendly cryptocurrencies. We discuss applications that are enabled by our strong inter-signer anonymity, demonstrating that thring signatures are interesting from a practical perspective also
    corecore