171,440 research outputs found

    Transfer Learning for Content-Based Recommender Systems using Tree Matching

    Full text link
    In this paper we present a new approach to content-based transfer learning for solving the data sparsity problem in cases when the users' preferences in the target domain are either scarce or unavailable, but the necessary information on the preferences exists in another domain. We show that training a system to use such information across domains can produce better performance. Specifically, we represent users' behavior patterns based on topological graph structures. Each behavior pattern represents the behavior of a set of users, when the users' behavior is defined as the items they rated and the items' rating values. In the next step we find a correlation between behavior patterns in the source domain and behavior patterns in the target domain. This mapping is considered a bridge between the two domains. Based on the correlation and content-attributes of the items, we train a machine learning model to predict users' ratings in the target domain. When we compare our approach to the popularity approach and KNN-cross-domain on a real world dataset, the results show that on an average of 83% of the cases our approach outperforms both methods

    Method For Detecting Shilling Attacks In E-commerce Systems Using Weighted Temporal Rules

    Full text link
    The problem of shilling attacks detecting in e-commerce systems is considered. The purpose of such attacks is to artificially change the rating of individual goods or services by users in order to increase their sales. A method for detecting shilling attacks based on a comparison of weighted temporal rules for the processes of selecting objects with explicit and implicit feedback from users is proposed. Implicit dependencies are specified through the purchase of goods and services. Explicit feedback is formed through the ratings of these products. The temporal rules are used to describe hidden relationships between the choices of user groups at two consecutive time intervals. The method includes the construction of temporal rules for explicit and implicit feedback, their comparison, as well as the formation of an ordered subset of temporal rules that capture potential shilling attacks. The method imposes restrictions on the input data on sales and ratings, which must be ordered by time or have timestamps. This method can be used in combination with other approaches to detecting shilling attacks. Integration of approaches allows to refine and supplement the existing attack patterns, taking into account the latest changes in user priorities

    On Recommendation of Learning Objects using Felder-Silverman Learning Style Model

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The e-learning recommender system in learning institutions is increasingly becoming the preferred mode of delivery, as it enables learning anytime, anywhere. However, delivering personalised course learning objects based on learner preferences is still a challenge. Current mainstream recommendation algorithms, such as the Collaborative Filtering (CF) and Content-Based Filtering (CBF), deal with only two types of entities, namely users and items with their ratings. However, these methods do not pay attention to student preferences, such as learning styles, which are especially important for the accuracy of course learning objects prediction or recommendation. Moreover, several recommendation techniques experience cold-start and rating sparsity problems. To address the challenge of improving the quality of recommender systems, in this paper a novel recommender algorithm for machine learning is proposed, which combines students actual rating with their learning styles to recommend Top-N course learning objects (LOs). Various recommendation techniques are considered in an experimental study investigating the best technique to use in predicting student ratings for e-learning recommender systems. We use the Felder-Silverman Learning Styles Model (FSLSM) to represent both the student learning styles and the learning object profiles. The predicted rating has been compared with the actual student rating. This approach has been experimented on 80 students for an online course created in the MOODLE Learning Management System, while the evaluation of the experiments has been performed with the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The results of the experiment verify that the proposed approach provides a higher prediction rating and significantly increases the accuracy of the recommendation

    RiPLE: Recommendation in Peer-Learning Environments Based on Knowledge Gaps and Interests

    Full text link
    Various forms of Peer-Learning Environments are increasingly being used in post-secondary education, often to help build repositories of student generated learning objects. However, large classes can result in an extensive repository, which can make it more challenging for students to search for suitable objects that both reflect their interests and address their knowledge gaps. Recommender Systems for Technology Enhanced Learning (RecSysTEL) offer a potential solution to this problem by providing sophisticated filtering techniques to help students to find the resources that they need in a timely manner. Here, a new RecSysTEL for Recommendation in Peer-Learning Environments (RiPLE) is presented. The approach uses a collaborative filtering algorithm based upon matrix factorization to create personalized recommendations for individual students that address their interests and their current knowledge gaps. The approach is validated using both synthetic and real data sets. The results are promising, indicating RiPLE is able to provide sensible personalized recommendations for both regular and cold-start users under reasonable assumptions about parameters and user behavior.Comment: 25 pages, 7 figures. The paper is accepted for publication in the Journal of Educational Data Minin
    corecore