28,635 research outputs found

    Group Properties of Crossover and Mutation

    Get PDF
    It is supposed that the finite search space Ω has certain symmetries that can be described in terms of a group of permutations acting upon it. If crossover and mutation respect these symmetries, then these operators can be described in terms of a mixing matrix and a group of permutation matrices. Conditions under which certain subsets of Ω are invariant under crossover are investigated, leading to a generalization of the term schema. Finally, it is sometimes possible for the group acting on Ω to induce a group structure on Ω itself

    Group Properties of Crossover and Mutation

    Full text link

    Properties of Nucleon Resonances by means of a Genetic Algorithm

    Get PDF
    We present an optimization scheme that employs a Genetic Algorithm (GA) to determine the properties of low-lying nucleon excitations within a realistic photo-pion production model based upon an effective Lagrangian. We show that with this modern optimization technique it is possible to reliably assess the parameters of the resonances and the associated error bars as well as to identify weaknesses in the models. To illustrate the problems the optimization process may encounter, we provide results obtained for the nucleon resonances Δ\Delta(1230) and Δ\Delta(1700). The former can be easily isolated and thus has been studied in depth, while the latter is not as well known experimentally.Comment: 12 pages, 10 figures, 3 tables. Minor correction

    Representation Invariant Genetic Operators

    Get PDF
    A genetic algorithm is invariant with respect to a set of representations if it runs the same no matter which of the representations is used. We formalize this concept mathematically, showing that the representations generate a group that acts upon the search space. Invariant genetic operators are those that commute with this group action. We then consider the problem of characterizing crossover and mutation operators that have such invariance properties. In the case where the corresponding group action acts transitively on the search space, we provide a complete characterization, including high-level representation-independent algorithms implementing these operators

    Fitness Uniform Optimization

    Full text link
    In evolutionary algorithms, the fitness of a population increases with time by mutating and recombining individuals and by a biased selection of more fit individuals. The right selection pressure is critical in ensuring sufficient optimization progress on the one hand and in preserving genetic diversity to be able to escape from local optima on the other hand. Motivated by a universal similarity relation on the individuals, we propose a new selection scheme, which is uniform in the fitness values. It generates selection pressure toward sparsely populated fitness regions, not necessarily toward higher fitness, as is the case for all other selection schemes. We show analytically on a simple example that the new selection scheme can be much more effective than standard selection schemes. We also propose a new deletion scheme which achieves a similar result via deletion and show how such a scheme preserves genetic diversity more effectively than standard approaches. We compare the performance of the new schemes to tournament selection and random deletion on an artificial deceptive problem and a range of NP-hard problems: traveling salesman, set covering and satisfiability.Comment: 25 double-column pages, 12 figure

    Adaptive group mutation for tackling deception in genetic search

    Get PDF
    Copyright @ 2004 WSEASIn order to study the efficacy of genetic algorithms (GAs), a number of fitness landscapes have been designed and used as test functions. Among these functions a family of deceptive functions have been developed as difficult test functions for comparing different implementations of GAs. In this paper an adaptive group mutation (AGM), which can be combined with traditional bit mutation in GAs, is proposed to tackle the deception problem in genetic searching. Within the AGM, those genes that have converged to certain threshold degree are adaptively grouped together and subject to mutation together with a given probability. To test the performance of the AGM, experiments were carried out to compare GAs that combine the AGM and GAs that use only traditional bit mutation with a number of suggested “standard” fixed mutation rates over a set of deceptive functions as well as non-deceptive functions. The results demonstrate that GAs with the AGM perform better than GAs with only traditional bit mutation over deceptive functions and as well as GAs with only traditional bit mutation over non-deceptive functions. The results show that the AGM is a good choice for GAs since most problems may involve some degree of deception and deceptive functions are difficult for GAs
    • …
    corecore