9,282 research outputs found

    Integrating security in a group oriented distributed system

    Get PDF
    A distributed security architecture is proposed for incorporation into group oriented distributed systems, and in particular, into the Isis distributed programming toolkit. The primary goal of the architecture is to make common group oriented abstractions robust in hostile settings, in order to facilitate the construction of high performance distributed applications that can tolerate both component failures and malicious attacks. These abstractions include process groups and causal group multicast. Moreover, a delegation and access control scheme is proposed for use in group oriented systems. The focus is the security architecture; particular cryptosystems and key exchange protocols are not emphasized

    An Evaluated Certification Services System for the German National Root CA - Legally Binding and Trustworthy Transactions in E-Business and E-Government

    Full text link
    National Root CAs enable legally binding E-Business and E-Government transactions. This is a report about the development, the evaluation and the certification of the new certification services system for the German National Root CA. We illustrate why a new certification services system was necessary, and which requirements to the new system existed. Then we derive the tasks to be done from the mentioned requirements. After that we introduce the initial situation at the beginning of the project. We report about the very process and talk about some unfamiliar situations, special approaches and remarkable experiences. Finally we present the ready IT system and its impact to E-Business and E-Government.Comment: 6 pages; 1 figure; IEEE style; final versio

    Asymptotic and finite-time almost global attitude tracking: representations free approach

    Full text link
    In this paper, the attitude tracking problem is considered using the rotation matrices. Due to the inherent topological restriction, it is impossible to achieve global attractivity with any continuous attitude control system on SO(3)SO(3). Hence in this work, we propose some control protocols achieve almost global tracking asymptotically and in finite time, respectively. In these protocols, no world frame is needed and only relative state informations are requested. For finite-time tracking case, Filippov solutions and non-smooth analysis techniques are adopted to handle the discontinuities. Simulation examples are provided to verify the performances of the control protocols designed in this paper.Comment: arXiv admin note: text overlap with arXiv:1705.0282

    Intellectual Property Management Strategies to Accelerate the Development and Access of Vaccines and Diagnostics: Case Studies on Pandemic Influenza, Malaria and SARS

    Get PDF
    Achieving global access to vaccines, diagnostics, and pharmaceuticals remains a challenge. Throughout the developing world, intellectual property (IP) constraints complicate access to critically essential medical technologies and products. Vaccines for malaria and pandemic strains of influenza, as well as diagnostic and vaccine technologies for SARS, are not only relevant to global public health but are particularly critical to the needs of developing countries. A global access solution is urgently needed. This article offers a timely case‐by‐case analysis of preliminary patent landscape surveys and formulates options via patent pools and other forms of creative IP management to accelerate development and access. The analysis of the feasibility of patent pools reveals several impediments to patent pools: these include antitrust considerations, bargaining difficulties caused by asymmetric interests and asymmetric rights among IP holders (e.g. improvement vs. foundational patents), and the difficulties of securing financial support given the significant transaction costs associated with pools. Because of the above conceptual and operational hurdles, patent pools do not appear to be a feasible way to accelerate development. Other mechanisms, however, can ameliorate IP constraints. For example, a key IP constraint related to pandemic influenza vaccines R&D appears to have been resolved when Medimmune secured the assembly of all relevant reverse genetics IP and pledged broad access. Clearly, the landscape is complex and multidimensional. Licensing systems are not the only issue. Measures must also be taken to limit regulatory hurdles and enable the swift, legal production of pandemic influenza vaccines to meet the needs of developing countries. This is why a comprehensive analysis is so necessary. From a strictly legal perspective, IP systems work through the power to exclude. However, as this study’s exploration and formulation of creative licensing strategies reveals, it is also true that IP can be structured and managed to work through the “power to include.

    Entrepreneurship, innovation and the triple helix model: evidence from Oxfordshire and Cambridgeshire

    Get PDF
    This paper focuses on how regions become entrepreneurial and the extent to which the actors in the triple helix model are dominant at particular stages in development. It uses the case studies of Oxfordshire and Cambridgeshire in the UK to explore this theme. Both can now be described as ‘regional triple helix spaces’ (Etzkowitz 2008), and form two points of the Golden Triangle of Oxford, Cambridge and London universities. As entrepreneurial regions, however, they differ in a number of respects. This is not surprising given their differing geo-historical contexts. However, by comparing the two similar counties but which have their own distinctive features we are able to explore different dynamics which lead to the inception, implementation, consolidation and renewal (Etzkowitz and Klofsten 2005) of regions characterised by very high levels of technology-based entrepreneurship

    Cortical Dynamics of Visual Motion Perception: Short-Range and Long Range Apparent Motion

    Full text link
    This article describes further evidence for a new neural network theory of biological motion perception that is called a Motion Boundary Contour System. This theory clarifies why parallel streams Vl-> V2 and Vl-> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The Motion Boundary Contour System consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a Motion Oriented Contrast Filter, or MOC Filter, for preprocessing moving images; and a Cooperative-Competitive Feedback Loop, or CC Loop, for generating emergent boundary segmentations of the filtered signals. The present article uses the MOC Filter to explain a variety of classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed-up of motion velocity as interfiash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte's Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem, including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the geometries of static form and motion form differ, in particular why opposite orientations differ by 90°, whereas opposite directions differ by 180°, and why a cortical stream Vl -> V2 -> MT is needed; and a summary of how the main properties of other motion perception models can be assimilated into different parts of the Motion Boundary Contour System design.Air Force Office of Scientific Research (90-0175); Army Research Office (DAAL-03-88-K0088); Defense Advanced Research Projects Agency (AFOSR-90-0083); Hughes Aircraft Company (S1-903136

    A metaobject architecture for fault-tolerant distributed systems : the FRIENDS approach

    Get PDF
    The FRIENDS system developed at LAAS-CNRS is a metalevel architecture providing libraries of metaobjects for fault tolerance, secure communication, and group-based distributed applications. The use of metaobjects provides a nice separation of concerns between mechanisms and applications. Metaobjects can be used transparently by applications and can be composed according to the needs of a given application, a given architecture, and its underlying properties. In FRIENDS, metaobjects are used recursively to add new properties to applications. They are designed using an object oriented design method and implemented on top of basic system services. This paper describes the FRIENDS software-based architecture, the object-oriented development of metaobjects, the experiments that we have done, and summarizes the advantages and drawbacks of a metaobject approach for building fault-tolerant system
    • 

    corecore