1,388 research outputs found

    Calibrated Fairness in Bandits

    Get PDF
    We study fairness within the stochastic, \emph{multi-armed bandit} (MAB) decision making framework. We adapt the fairness framework of "treating similar individuals similarly" to this setting. Here, an `individual' corresponds to an arm and two arms are `similar' if they have a similar quality distribution. First, we adopt a {\em smoothness constraint} that if two arms have a similar quality distribution then the probability of selecting each arm should be similar. In addition, we define the {\em fairness regret}, which corresponds to the degree to which an algorithm is not calibrated, where perfect calibration requires that the probability of selecting an arm is equal to the probability with which the arm has the best quality realization. We show that a variation on Thompson sampling satisfies smooth fairness for total variation distance, and give an O~((kT)2/3)\tilde{O}((kT)^{2/3}) bound on fairness regret. This complements prior work, which protects an on-average better arm from being less favored. We also explain how to extend our algorithm to the dueling bandit setting.Comment: To be presented at the FAT-ML'17 worksho

    Distributed Learning in Multi-Armed Bandit with Multiple Players

    Full text link
    We formulate and study a decentralized multi-armed bandit (MAB) problem. There are M distributed players competing for N independent arms. Each arm, when played, offers i.i.d. reward according to a distribution with an unknown parameter. At each time, each player chooses one arm to play without exchanging observations or any information with other players. Players choosing the same arm collide, and, depending on the collision model, either no one receives reward or the colliding players share the reward in an arbitrary way. We show that the minimum system regret of the decentralized MAB grows with time at the same logarithmic order as in the centralized counterpart where players act collectively as a single entity by exchanging observations and making decisions jointly. A decentralized policy is constructed to achieve this optimal order while ensuring fairness among players and without assuming any pre-agreement or information exchange among players. Based on a Time Division Fair Sharing (TDFS) of the M best arms, the proposed policy is constructed and its order optimality is proven under a general reward model. Furthermore, the basic structure of the TDFS policy can be used with any order-optimal single-player policy to achieve order optimality in the decentralized setting. We also establish a lower bound on the system regret growth rate for a general class of decentralized polices, to which the proposed policy belongs. This problem finds potential applications in cognitive radio networks, multi-channel communication systems, multi-agent systems, web search and advertising, and social networks.Comment: 31 pages, 8 figures, revised paper submitted to IEEE Transactions on Signal Processing, April, 2010, the pre-agreement in the decentralized TDFS policy is eliminated to achieve a complete decentralization among player

    Fairness Incentives for Myopic Agents

    Get PDF
    We consider settings in which we wish to incentivize myopic agents (such as Airbnb landlords, who may emphasize short-term profits and property safety) to treat arriving clients fairly, in order to prevent overall discrimination against individuals or groups. We model such settings in both classical and contextual bandit models in which the myopic agents maximize rewards according to current empirical averages, but are also amenable to exogenous payments that may cause them to alter their choices. Our notion of fairness asks that more qualified individuals are never (probabilistically) preferred over less qualified ones [Joseph et al]. We investigate whether it is possible to design inexpensive {subsidy} or payment schemes for a principal to motivate myopic agents to play fairly in all or almost all rounds. When the principal has full information about the state of the myopic agents, we show it is possible to induce fair play on every round with a subsidy scheme of total cost o(T)o(T) (for the classic setting with kk arms, O~(k3T)\tilde{O}(\sqrt{k^3T}), and for the dd-dimensional linear contextual setting O~(dk3T)\tilde{O}(d\sqrt{k^3 T})). If the principal has much more limited information (as might often be the case for an external regulator or watchdog), and only observes the number of rounds in which members from each of the kk groups were selected, but not the empirical estimates maintained by the myopic agent, the design of such a scheme becomes more complex. We show both positive and negative results in the classic and linear bandit settings by upper and lower bounding the cost of fair subsidy schemes

    An ADMM Based Framework for AutoML Pipeline Configuration

    Full text link
    We study the AutoML problem of automatically configuring machine learning pipelines by jointly selecting algorithms and their appropriate hyper-parameters for all steps in supervised learning pipelines. This black-box (gradient-free) optimization with mixed integer & continuous variables is a challenging problem. We propose a novel AutoML scheme by leveraging the alternating direction method of multipliers (ADMM). The proposed framework is able to (i) decompose the optimization problem into easier sub-problems that have a reduced number of variables and circumvent the challenge of mixed variable categories, and (ii) incorporate black-box constraints along-side the black-box optimization objective. We empirically evaluate the flexibility (in utilizing existing AutoML techniques), effectiveness (against open source AutoML toolkits),and unique capability (of executing AutoML with practically motivated black-box constraints) of our proposed scheme on a collection of binary classification data sets from UCI ML& OpenML repositories. We observe that on an average our framework provides significant gains in comparison to other AutoML frameworks (Auto-sklearn & TPOT), highlighting the practical advantages of this framework
    corecore