180,850 research outputs found

    Group Based Interference Alignment

    Full text link
    In the KK-user single-input single-output (SISO) frequency-selective fading interference channel, it is shown that the maximal achievable multiplexing gain is almost surely K/2K/2 by using interference alignment (IA). However, when the signaling dimensions are limited, allocating all the resources to all users simultaneously is not optimal. So, a group based interference alignment (GIA) scheme is proposed, and it is formulated as an unbounded knapsack problem. Optimal and greedy search algorithms are proposed to obtain group patterns. Analysis and numerical results show that the GIA scheme can obtain a higher multiplexing gain when the resources are limited.Comment: 3 pages, 3 figures. resubmitted to IEEE Communications Letter

    Interference Mitigation in Large Random Wireless Networks

    Full text link
    A central problem in the operation of large wireless networks is how to deal with interference -- the unwanted signals being sent by transmitters that a receiver is not interested in. This thesis looks at ways of combating such interference. In Chapters 1 and 2, we outline the necessary information and communication theory background, including the concept of capacity. We also include an overview of a new set of schemes for dealing with interference known as interference alignment, paying special attention to a channel-state-based strategy called ergodic interference alignment. In Chapter 3, we consider the operation of large regular and random networks by treating interference as background noise. We consider the local performance of a single node, and the global performance of a very large network. In Chapter 4, we use ergodic interference alignment to derive the asymptotic sum-capacity of large random dense networks. These networks are derived from a physical model of node placement where signal strength decays over the distance between transmitters and receivers. (See also arXiv:1002.0235 and arXiv:0907.5165.) In Chapter 5, we look at methods of reducing the long time delays incurred by ergodic interference alignment. We analyse the tradeoff between reducing delay and lowering the communication rate. (See also arXiv:1004.0208.) In Chapter 6, we outline a problem that is equivalent to the problem of pooled group testing for defective items. We then present some new work that uses information theoretic techniques to attack group testing. We introduce for the first time the concept of the group testing channel, which allows for modelling of a wide range of statistical error models for testing. We derive new results on the number of tests required to accurately detect defective items, including when using sequential `adaptive' tests.Comment: PhD thesis, University of Bristol, 201

    A hybrid TIM-NOMA scheme for the SISO Broadcast Channel

    Get PDF
    Future mobile communication networks will require enhanced network efficiency and reduced system overhead due to their user density and high data rate demanding applications of the mobile devices. Research on Blind Interference Alignment (BIA) and Topological Interference Management (TIM) has shown that optimal Degrees of Freedom (DoF) can be achieved, in the absence of Channel State Information (CSI) at the transmitters, reducing the network's overhead. Moreover, the recently emerged Non-Orthogonal Multiple Access (NOMA) scheme suggests a different multiple access approach, compared to the current orthogonal methods employed in 4G networks, resulting in high capacity gains. Our contribution is a hybrid TIM-NOMA scheme in Single-Input-Single-Output (SISO) K-user cells, in which users are divided into T groups, and 1/T DoF is achieved for each user. By superimposing users in the power domain, we introduce a two-stage decoding process, managing 'inter-group' interference based on the TIM principles, and 'intra-group' interference based on Successful Interference Cancellation (SIC), as proposed by NOMA. We show that for high SNR values the hybrid scheme can improve the sum rate by at least 100% when compared to Time Division Multiple Access (TDMA).Comment: 6 pages, 6 figures, submitted to IEEE ICC'15 - IEEE SCAN Worksho

    Conformation dependence of charge transfer and level alignment in nitrobenzene junctions with pyridyl anchor groups

    Full text link
    The alignment of molecular levels with the Fermi energy in single molecule junctions is a crucial factor in determining their conductance or the observability of quantum interference effects. In the present study which is based on density functional theory calculations, we explore the zero-bias charge transfer and level alignment for nitro-bipyridyl-phenyl adsorbed between two gold surfaces which we find to vary significantly with the molecular conformation. The net charge transfer is the result of two opposing effects, namely Pauli repulsion at the interface between the molecule and the leads, and the electron accepting nature of the NO2_2 group, where only the latter which we analyze in terms of the electronegativity of the isolated molecules depends on the two intra-molecular torsion angles. We provide evidence that the conformation dependence of the alignment of molecular levels and peaks in the transmission function can indeed be understood in terms of charge transfer for this system, and that other properties such as molecular dipoles do not play a significant role. Our study is relevant for device design in molecular electronics where nitrobenzene appears as a component in proposals for rectification, quantum interference or chemical gating.Comment: 10 pages, 6 figure

    A hybrid TIM-NOMA scheme for the Broadcast Channel

    Get PDF
    Future mobile communication networks will require enhanced network efficiency and reduced system overhead. Research on Blind Interference Alignment and Topological Interference Management (TIM) has shown that optimal Degrees of Freedom can be achieved, in the absence of Channel State Information at the transmitters. Moreover, the recently emerged Non-Orthogonal Multiple Access (NOMA) scheme suggests a different multiple access approach, compared to the orthogonal methods employed in 4G, resulting in high capacity gains. Our contribution is a hybrid TIM-NOMA scheme in K-user cells, where users are divided into T groups. By superimposing users in the power domain, we introduce a two-stage decoding process, managing inter-group interference based on the TIM principles, and intra-group interference based on Successful Interference Cancellation, as proposed by NOMA. We show that the hybrid scheme can improve the sum rate by at least 100% compared to Time Division Multiple Access, for high SNR values.Comment: 11 pages, Published at "EAI Endorsed Transactions on Wireless Spectrum

    Interference Alignment for the Multi-Antenna Compound Wiretap Channel

    Full text link
    We study a wiretap channel model where the sender has MM transmit antennas and there are two groups consisting of J1J_1 and J2J_2 receivers respectively. Each receiver has a single antenna. We consider two scenarios. First we consider the compound wiretap model -- group 1 constitutes the set of legitimate receivers, all interested in a common message, whereas group 2 is the set of eavesdroppers. We establish new lower and upper bounds on the secure degrees of freedom. Our lower bound is based on the recently proposed \emph{real interference alignment} scheme. The upper bound provides the first known example which illustrates that the \emph{pairwise upper bound} used in earlier works is not tight. The second scenario we study is the compound private broadcast channel. Each group is interested in a message that must be protected from the other group. Upper and lower bounds on the degrees of freedom are developed by extending the results on the compound wiretap channel.Comment: Minor edits. Submitted to IEEE Trans. Inf. Theor

    A New DoF Upper Bound and Its Achievability for KK-User MIMO Y Channels

    Full text link
    This work is to study the degrees of freedom (DoF) for the KK-user MIMO Y channel. Previously, two transmission frameworks have been proposed for the DoF analysis when N≥2MN \geq 2M, where MM and NN denote the number of antennas at each source node and the relay node respectively. The first method is named as signal group based alignment proposed by Hua et al. in [1]. The second is named as signal pattern approach introduced by Wang et al. in [2]. But both of them only studied certain antenna configurations. The maximum achievable DoF in the general case still remains unknown. In this work, we first derive a new upper bound of the DoF using the genie-aided approach. Then, we propose a more general transmission framework, generalized signal alignment (GSA), and show that the previous two methods are both special cases of GSA. With GSA, we prove that the new DoF upper bound is achievable when NM∈(0,2+4K(K−1)]∪[K−2,+∞)\frac{N}{M} \in \left(0,2+\frac{4}{K(K-1)}\right] \cup \left[K-2, +\infty\right). The DoF analysis in this paper provides a major step forward towards the fundamental capacity limit of the KK-user MIMO Y channel. It also offers a new approach of integrating interference alignment with physical layer network coding.Comment: 6 pages, 3 figures, submitted to IEEE ICC 2015. arXiv admin note: text overlap with arXiv:1405.071
    • …
    corecore