431,876 research outputs found

    Group Activity Selection with Few Agent Types

    Get PDF
    The Group Activity Selection Problem (GASP) models situations where a group of agents needs to be distributed to a set of activities while taking into account preferences of the agents w.r.t. individual activities and activity sizes. The problem, along with its well-known variants sGASP and gGASP, has previously been studied in the parameterized complexity setting with various parameterizations, such as number of agents, number of activities and solution size. However, the complexity of the problem parameterized by the number of types of agents, a natural parameter proposed already in the first paper that introduced GASP, has so far remained unexplored. In this paper we establish the complexity map for GASP, sGASP and gGASP when the number of types of agents is the parameter. Our positive results, consisting of one fixed-parameter algorithm and one XP algorithm, rely on a combination of novel Subset Sum machinery (which may be of general interest) and identifying certain compression steps which allow us to focus on solutions which are "acyclic". These algorithms are complemented by matching lower bounds, which among others close a gap to a recently obtained tractability result of Gupta, Roy, Saurabh and Zehavi (2017). In this direction, the techniques used to establish W[1]-hardness of sGASP are of particular interest: as an intermediate step, we use Sidon sequences to show the W[1]-hardness of a highly restricted variant of multi-dimensional Subset Sum, which may find applications in other settings as well

    Emergence of Leadership in Communication

    Full text link
    We study a neuro-inspired model that mimics a discussion (or information dissemination) process in a network of agents. During their interaction, agents redistribute activity and network weights, resulting in emergence of leader(s). The model is able to reproduce the basic scenarios of leadership known in nature and society: laissez-faire (irregular activity, weak leadership, sizable inter-follower interaction, autonomous sub-leaders); participative or democratic (strong leadership, but with feedback from followers); and autocratic (no feedback, one-way influence). Several pertinent aspects of these scenarios are found as well---e.g., hidden leadership (a hidden clique of agents driving the official autocratic leader), and successive leadership (two leaders influence followers by turns). We study how these scenarios emerge from inter-agent dynamics and how they depend on behavior rules of agents---in particular, on their inertia against state changes.Comment: 17 pages, 11 figure

    Spatial interactions in agent-based modeling

    Full text link
    Agent Based Modeling (ABM) has become a widespread approach to model complex interactions. In this chapter after briefly summarizing some features of ABM the different approaches in modeling spatial interactions are discussed. It is stressed that agents can interact either indirectly through a shared environment and/or directly with each other. In such an approach, higher-order variables such as commodity prices, population dynamics or even institutions, are not exogenously specified but instead are seen as the results of interactions. It is highlighted in the chapter that the understanding of patterns emerging from such spatial interaction between agents is a key problem as much as their description through analytical or simulation means. The chapter reviews different approaches for modeling agents' behavior, taking into account either explicit spatial (lattice based) structures or networks. Some emphasis is placed on recent ABM as applied to the description of the dynamics of the geographical distribution of economic activities, - out of equilibrium. The Eurace@Unibi Model, an agent-based macroeconomic model with spatial structure, is used to illustrate the potential of such an approach for spatial policy analysis.Comment: 26 pages, 5 figures, 105 references; a chapter prepared for the book "Complexity and Geographical Economics - Topics and Tools", P. Commendatore, S.S. Kayam and I. Kubin, Eds. (Springer, in press, 2014

    The Ubiquitous Interactor - Device Independent Access to Mobile Services

    Full text link
    The Ubiquitous Interactor (UBI) addresses the problems of design and development that arise around services that need to be accessed from many different devices. In UBI, the same service can present itself with different user interfaces on different devices. This is done by separating interaction between users and services from presentation. The interaction is kept the same for all devices, and different presentation information is provided for different devices. This way, tailored user interfaces for many different devices can be created without multiplying development and maintenance work. In this paper we describe the system design of UBI, the system implementation, and two services implemented for the system: a calendar service and a stockbroker service

    A customizable multi-agent system for distributed data mining

    Get PDF
    We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances
    • …
    corecore