678 research outputs found

    Grounding Verbs of Motion in Natural Language Commands to Robots

    Get PDF
    To be useful teammates to human partners, robots must be able to follow spoken instructions given in natural language. An important class of instructions involve interacting with people, such as “Follow the person to the kitchen” or “Meet the person at the elevators.” These instructions require that the robot fluidly react to changes in the environment, not simply follow a pre-computed plan. We present an algorithm for understanding natural language commands with three components. First, we create a cost function that scores the language according to how well it matches a candidate plan in the environment, defined as the log-likelihood of the plan given the command. Components of the cost function include novel models for the meanings of motion verbs such as “follow,” “meet,” and “avoid,” as well as spatial relations such as “to” and landmark phrases such as “the kitchen.” Second, an inference method uses this cost function to perform forward search, finding a plan that matches the natural language command. Third, a high-level controller repeatedly calls the inference method at each timestep to compute a new plan in response to changes in the environment such as the movement of the human partner or other people in the scene. When a command consists of more than a single task, the controller switches to the next task when an earlier one is satisfied. We evaluate our approach on a set of example tasks that require the ability to follow both simple and complex natural language commands. Keywords: Cost Function; Spatial Relation; State Sequence; Edit Distance; Statistical Machine TranslationUnited States. Office of Naval Research (Grant MURI N00014-07-1-0749

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe

    Approaching the Symbol Grounding Problem with Probabilistic Graphical Models

    Get PDF
    In order for robots to engage in dialog with human teammates, they must have the ability to map between words in the language and aspects of the external world. A solution to this symbol grounding problem (Harnad, 1990) would enable a robot to interpret commands such as “Drive over to receiving and pick up the tire pallet.” In this article we describe several of our results that use probabilistic inference to address the symbol grounding problem. Our specific approach is to develop models that factor according to the linguistic structure of a command. We first describe an early result, a generative model that factors according to the sequential structure of language, and then discuss our new framework, generalized grounding graphs (G3). The G3 framework dynamically instantiates a probabilistic graphical model for a natural language input, enabling a mapping between words in language and concrete objects, places, paths and events in the external world. We report on corpus-based experiments where the robot is able to learn and use word meanings in three real-world tasks: indoor navigation, spatial language video retrieval, and mobile manipulation.U.S. Army Research Laboratory. Collaborative Technology Alliance Program (Cooperative Agreement W911NF-10-2-0016)United States. Office of Naval Research (MURI N00014-07-1-0749

    Exploiting Deep Semantics and Compositionality of Natural Language for Human-Robot-Interaction

    Full text link
    We develop a natural language interface for human robot interaction that implements reasoning about deep semantics in natural language. To realize the required deep analysis, we employ methods from cognitive linguistics, namely the modular and compositional framework of Embodied Construction Grammar (ECG) [Feldman, 2009]. Using ECG, robots are able to solve fine-grained reference resolution problems and other issues related to deep semantics and compositionality of natural language. This also includes verbal interaction with humans to clarify commands and queries that are too ambiguous to be executed safely. We implement our NLU framework as a ROS package and present proof-of-concept scenarios with different robots, as well as a survey on the state of the art

    The Mechanics of Embodiment: A Dialogue on Embodiment and Computational Modeling

    Get PDF
    Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamouring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensory-motor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialogue between two fictional characters: Ernest, the �experimenter�, and Mary, the �computational modeller�. The dialogue consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modelling
    corecore