561 research outputs found

    Hyperspectral benthic mapping from underwater robotic platforms

    Get PDF
    We live on a planet of vast oceans; 70% of the Earth's surface is covered in water. They are integral to supporting life, providing 99% of the inhabitable space on Earth. Our oceans and the habitats within them are under threat due to a variety of factors. To understand the impacts and possible solutions, the monitoring of marine habitats is critically important. Optical imaging as a method for monitoring can provide a vast array of information however imaging through water is complex. To compensate for the selective attenuation of light in water, this thesis presents a novel light propagation model and illustrates how it can improve optical imaging performance. An in-situ hyperspectral system is designed which comprised of two upward looking spectrometers at different positions in the water column. The downwelling light in the water column is continuously sampled by the system which allows for the generation of a dynamic water model. In addition to the two upward looking spectrometers the in-situ system contains an imaging module which can be used for imaging of the seafloor. It consists of a hyperspectral sensor and a trichromatic stereo camera. New calibration methods are presented for the spatial and spectral co-registration of the two optical sensors. The water model is used to create image data which is invariant to the changing optical properties of the water and changing environmental conditions. In this thesis the in-situ optical system is mounted onboard an Autonomous Underwater Vehicle. Data from the imaging module is also used to classify seafloor materials. The classified seafloor patches are integrated into a high resolution 3D benthic map of the surveyed site. Given the limited imaging resolution of the hyperspectral sensor used in this work, a new method is also presented that uses information from the co-registered colour images to inform a new spectral unmixing method to resolve subpixel materials

    Enhancing the detection and classification of coral reef and associated benthic habitats: A hyperspectral remote sensing approach

    Get PDF
    Coral reefs and associated benthic habitats are heterogeneous in nature. A remote sensor designed to discriminate these environments requires a high number of narrow, properly placed bands which are not currently available in existing satellite sensors. Optical hyperspectral sensors mounted on aerial platforms seem to be appropriate for overcoming the lack of both high spectral and spatial resolution of satellite sensors. This research presents results of an innovative coral reef application by such a sensor. Using hyperspectral Airborne Imaging Spectroradiometer for Applications (AISA) Eagle data, the approach presented solves the confounding influence of water column attenuation on substrate reflectance on a per-pixel basis. The hyperspectral imagery was used in band ratio algorithms to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). The water column correction technique produced a bottom albedo image which revealed that the dark regions comprised of sea grasses and benthic algae had albedo values ≈15%, whereas sand- and coral-dominated areas had albedos \u3e30% and ≈15–35%, respectively. The retrieved bottom albedo image was then used to classify the benthos, generating a detailed map of benthic habitats, followed by accuracy assessment

    Semi-Automated Object-Based Classification of Coral Reef Habitat Using Discrete Choice Models

    Get PDF
    As for terrestrial remote sensing, pixel-based classifiers have traditionally been used to map coral reef habitats. For pixel-based classifiers, habitat assignment is based on the spectral or textural properties of each individual pixel in the scene. More recently, however, object-based classifications, those based on information from a set of contiguous pixels with similar properties, have found favor with the reef mapping community and are starting to be extensively deployed. Object-based classifiers have an advantage over pixel-based in that they are less compromised by the inevitable inhomogeneity in per-pixel spectral response caused, primarily, by variations in water depth. One aspect of the object-based classification workflow is the assignment of each image object to a habitat class on the basis of its spectral, textural, or geometric properties. While a skilled image interpreter can achieve this task accurately through manual editing, full or partial automation is desirable for large-scale reef mapping projects of the magnitude which are useful for marine spatial planning. To this end, this paper trials the use of multinomial logistic discrete choice models to classify coral reef habitats identified through object-based segmentation of satellite imagery. Our results suggest that these models can attain assignment accuracies of about 85%, while also reducing the time needed to produce the map, as compared to manual methods. Limitations of this approach include misclassification of image objects at the interface between some habitat types due to the soft gradation in nature between habitats, the robustness of the segmentation algorithm used, and the selection of a strong training dataset. Finally, due to the probabilistic nature of multinomial logistic models, the analyst can estimate a map of uncertainty associated with the habitat classifications. Quantifying uncertainty is important to the end-user when developing marine spatial planning scenarios and populating spatial models from reef habitat maps

    Automated Activity Estimation of the Cold-Water Coral Lophelia pertusa by Multispectral Imaging and Computational Pixel Classification

    Get PDF
    The cold-water coral Lophelia pertusa builds up bioherms that sustain high biodiversity in the deep ocean worldwide. Photographic monitoring of the polyp activity represents a helpful tool to characterize the health status of the corals and to assess anthropogenic impacts on the microhabitat. Discriminating active polyps from skeletons of white Lophelia pertusa is usually time-consuming and error-prone due to their similarity in color in common RGB camera footage. Acquisition of finer resolved spectral information might increase the contrast between the segments of polyps and skeletons, and therefore could support automated classification and accurate activity estimation of polyps. For recording the needed footage, underwater multispectral imaging systems can be used, but they are often expensive and bulky. Here we present results of a new, light-weight, compact and low-cost deep-sea tunable LED-based underwater multispectral imaging system (TuLUMIS) with eight spectral channels. A brunch of healthy white Lophelia pertusa was observed under controlled conditions in a laboratory tank. Spectral reflectance signatures were extracted from pixels of polyps and skeletons of the observed coral. Results showed that the polyps can be better distinguished from the skeleton by analysis of the eight-dimensional spectral reflectance signatures compared to three-channel RGB data. During a 72-hour monitoring of the coral with a half-hour temporal resolution in the lab, the polyp activity was estimated based on the results of the multispectral pixel classification using a support vector machine (SVM) approach. The computational estimated polyp activity was consistent with that of the manual annotation, which yielded a correlation coefficient of 0.957

    A Trillion Coral Reef Colors: Deeply Annotated Underwater Hyperspectral Images for Automated Classification and Habitat Mapping

    No full text
    This paper describes a large dataset of underwater hyperspectral imagery that can be used by researchers in the domains of computer vision, machine learning, remote sensing, and coral reef ecology. We present the details of underwater data acquisition, processing and curation to create this large dataset of coral reef imagery annotated for habitat mapping. A diver-operated hyperspectral imaging system (HyperDiver) was used to survey 147 transects at 8 coral reef sites around the Caribbean island of Curacao. The underwater proximal sensing approach produced fine-scale images of the seafloor, with more than 2.2 billion points of detailed optical spectra. Of these, more than 10 million data points have been annotated for habitat descriptors or taxonomic identity with a total of 47 class labels up to genus- and species-levels. In addition to HyperDiver survey data, we also include images and annotations from traditional (color photo) quadrat surveys conducted along 23 of the 147 transects, which enables comparative reef description between two types of reef survey methods. This dataset promises benefits for efforts in classification algorithms, hyperspectral image segmentation and automated habitat mapping. Dataset: https://doi.org/10.1594/PANGAEA.911300 Dataset License: CC-BY-N

    Integrating field data with high spatial resolution multispectral satellite imagery for calibration and validation of coral reef benthic community maps

    Get PDF
    Our ability to map coral reef environments using remote sensing has increased through improved access to: satellite images and field survey data at suitable spatial scales, and software enabling the integration of data sources. These data sets can be used to provide validated maps to support science and management decisions. The objective of this paper was to compare two methods for calibrating and validating maps of coral reef benthic communities derived from satellite images captured over a variety of Coral Reefs The two methods for collecting georeferenced benthic field data were: 1), georeferenced photo transects and 2), spot checks. Quickbird imagery was acquired for three Fijian coral reef environments in: Suva, Navakavu and Solo. These environments had variable water clarity and spatial complexity of benthic cover composition. The two field data sets at each reef were each split, and half were used for training data sets for supervised classifications, and the other half for accuracy assessment. This resulted in two maps of benthic communities with associated mapping accuracies, production times and costs for each study-site. Analyses of the spatial patterns in benthic community maps and their Overall and Tau accuracies revealed that for spatially complex habitats, the maps produced from photo transect data were twice as accurate as spot check based maps. In the context of the reefs examined, our results showed that the photo- transect method was a robust procedure which could be used in a range of coral reef environments to map the benthic communities accurately. In contrast, the spot check method is a fast and low cost approach, suitable for mapping benthic communities which have lower spatial complexity. Our findings will enable scientists, technicians and managers to select appropriate methods for collecting field data to integrate with high spatial resolution multi-spectral imagery to create validated coral reef benthic community maps. © 2010 Society of Photo-Optical Instrumentation Engineer

    Development of techniques to classify marine benthic habitats using hyperspectral imagery in oligotrophic, temperate waters

    Get PDF
    There is an increasing need for more detailed knowledge about the spatial distribution and structure of shallow water benthic habitats for marine conservation and planning. This, linked with improvements in hyperspectral image sensors provides an increased opportunity to develop new techniques to better utilise these data in marine mapping projects. The oligotrophic, optically-shallow waters surrounding Rottnest Island, Western Australia, provide a unique opportunity to develop and apply these new mapping techniques. The three flight lines of HyMap hyperspectral data flown for the Rottnest Island Reserve (RIR) in April 2004 were corrected for atmospheric effects, sunglint and the influence of the water column using the Modular Inversion and Processing System. A digital bathymetry model was created for the RIR using existing soundings data and used to create a range of topographic variables (e.g. slope) and other spatially relevant environmental variables (e.g. exposure to waves) that could be used to improve the ecological description of the benthic habitats identified in the hyperspectral imagery. A hierarchical habitat classification scheme was developed for Rottnest Island based on the dominant habitat components, such as Ecklonia radiata or Posidonia sinuosa. A library of 296 spectral signatures at HyMap spectral resolution (~15 nm) was created from >6000 in situ measurements of the dominant habitat components and subjected to spectral separation analysis at all levels of the habitat classification scheme. A separation analysis technique was developed using a multivariate statistical optimisation approach that utilised a genetic algorithm in concert with a range of spectral metrics to determine the optimum set of image bands to achieve maximum separation at each classification level using the entire spectral library. These results determined that many of the dominant habitat components could be separated spectrally as pure spectra, although there were almost always some overlapping samples from most classes at each split in the scheme. This led to the development of a classification algorithm that accounted for these overlaps. This algorithm was tested using mixture analysis, which attempted to identify 10 000 synthetically mixed signatures, with a known dominant component, on each run. The algorithm was applied directly to the water-corrected bottom reflectance data to classify the benthic habitats. At the broadest scale, bio-substrate regions were separated from bare substrates in the image with an overall accuracy of 95% and, at the finest scale, bare substrates, Posidonia, Amphibolis, Ecklonia radiata, Sargassum species, algal turf and coral were separated with an accuracy of 70%. The application of these habitat maps to a number of marine planning and management scenarios, such as marine conservation and the placement of boat moorings at dive sites was demonstrated. Committee Informatio

    A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats

    Get PDF
    We developed a novel integrated technology for diver-operated surveying of shallow marine ecosystems. The HyperDiver system captures rich multifaceted data in each transect: hyperspectral and color imagery, topographic profiles, incident irradiance and water chemistry at a rate of 15-30 m(2) per minute. From surveys in a coral reef following standard diver protocols, we show how the rich optical detail can be leveraged to generate photopigment abundance and benthic composition maps. We applied machine learning techniques, with a minor annotation effort (<2% of pixels), to automatically generate cm-scale benthic habitat maps of high taxonomic resolution and accuracy (93-97%). The ability to efficiently map benthic composition, photopigment densities and rugosity at reef scales is a compelling contribution to modernize reef monitoring. Seafloor-level hyperspectral images can be used for automated mapping, avoiding operator bias in the analysis and deliver the degree of detail necessary for standardized environmental monitoring. The technique can deliver fast, objective and economic reef survey results, making it a valuable tool for coastal managers and reef ecologists. Underwater hyperspectral surveying shares the vantage point of the high spatial and taxonomic resolution restricted to field surveys, with analytical techniques of remote sensing and provides targeted validation for aerial monitoring

    Application of Hyperspectral Imaging to Underwater Habitat Mapping, Southern Adriatic Sea

    Get PDF
    Hyperspectral imagers enable the collection of high-resolution spectral images exploitable for the supervised classification of habitats and objects of interest (OOI). Although this is a well-established technology for the study of subaerial environments, Ecotone AS has developed an underwater hyperspectral imager (UHI) system to explore the properties of the seafloor. The aim of the project is to evaluate the potential of this instrument for mapping and monitoring benthic habitats in shallow and deep-water environments. For the first time, we tested this system at two sites in the Southern Adriatic Sea (Mediterranean Sea): the cold-water coral (CWC) habitat in the Bari Canyon and the Coralligenous habitat off Brindisi. We created a spectral library for each site, considering the different substrates and the main OOI reaching, where possible, the lower taxonomic rank. We applied the spectral angle mapper (SAM) supervised classification to map the areal extent of the Coralligenous and to recognize the major CWC habitat-formers. Despite some technical problems, the first results demonstrate the suitability of the UHI camera for habitat mapping and seabed monitoring, through the achievement of quantifiable and repeatable classifications
    • …
    corecore