114 research outputs found

    System Development of an Unmanned Ground Vehicle and Implementation of an Autonomous Navigation Module in a Mine Environment

    Get PDF
    There are numerous benefits to the insights gained from the exploration and exploitation of underground mines. There are also great risks and challenges involved, such as accidents that have claimed many lives. To avoid these accidents, inspections of the large mines were carried out by the miners, which is not always economically feasible and puts the safety of the inspectors at risk. Despite the progress in the development of robotic systems, autonomous navigation, localization and mapping algorithms, these environments remain particularly demanding for these systems. The successful implementation of the autonomous unmanned system will allow mine workers to autonomously determine the structural integrity of the roof and pillars through the generation of high-fidelity 3D maps. The generation of the maps will allow the miners to rapidly respond to any increasing hazards with proactive measures such as: sending workers to build/rebuild support structure to prevent accidents. The objective of this research is the development, implementation and testing of a robust unmanned ground vehicle (UGV) that will operate in mine environments for extended periods of time. To achieve this, a custom skid-steer four-wheeled UGV is designed to operate in these challenging underground mine environments. To autonomously navigate these environments, the UGV employs the use of a Light Detection and Ranging (LiDAR) and tactical grade inertial measurement unit (IMU) for the localization and mapping through a tightly-coupled LiDAR Inertial Odometry via Smoothing and Mapping framework (LIO-SAM). The autonomous navigation module was implemented based upon the Fast likelihood-based collision avoidance with an extension to human-guided navigation and a terrain traversability analysis framework. In order to successfully operate and generate high-fidelity 3D maps, the system was rigorously tested in different environments and terrain to verify its robustness. To assess the capabilities, several localization, mapping and autonomous navigation missions were carried out in a coal mine environment. These tests allowed for the verification and tuning of the system to be able to successfully autonomously navigate and generate high-fidelity maps

    Multiple Integrated Navigation Sensors for Improving Occupancy Grid FastSLAM

    Get PDF
    An autonomous vehicle must accurately observe its location within the environment to interact with objects and accomplish its mission. When its environment is unknown, the vehicle must construct a map detailing its surroundings while using it to maintain an accurate location. Such a vehicle is faced with the circularly defined Simultaneous Localization and Mapping (SLAM) problem. However difficult, SLAM is a critical component of autonomous vehicle exploration with applications to search and rescue. To current knowledge, this research presents the first SLAM solution to integrate stereo cameras, inertial measurements, and vehicle odometry into a Multiple Integrated Navigation Sensor (MINS) path. The implementation combines the MINS path with LIDAR to observe and map the environment using the FastSLAM algorithm. In real-world tests, a mobile ground vehicle equipped with these sensors completed a 140 meter loop around indoor hallways. This SLAM solution produces a path that closes the loop and remains within 1 meter of truth, reducing the error 92% from an image-inertial navigation system and 79% from odometry FastSLAM

    Application of an autonomous robot for the collection of nearshore topographic and hydrodynamic measurements

    Get PDF
    Beach topographic and hydrodynamic measurements are essential for coastal geology and engineering studies as well as sustainable coastal management. Standard approaches involve either time-consuming manual data acquisition usually with limited coverage or remote sensing techniques which are usually characterized by low resolution or increased costs. The present contribution reports the results from the application of the autonomous robot RTS-Hanna with a calibrated sensor setup including 3D laser range scanners, a camera, a Differential GPS and an inertial measurement unit which significantly facilitates field data collection. RTS-Hanna was tested at the Wadden Sea Barrier Island Langeoog, Northern Germany, for two days and was proven capable of autonomously collecting topographic scans. 175 GB of dense topographic and water surface elevation data were collected, including RBG images, while RTS-Hanna covered a total of 21 km of coastline in approximately 3 hours. Scans of the surf/swash zone allowed continuous measurements of topographic changes at the beachface, wave propagation velocities and wave breaking heights

    APPLICATION OF AN AUTONOMOUS ROBOT FOR THE COLLECTION OF NEARSHORE TOPOGRAPHIC AND HYDRODYNAMIC MEASUREMENTS

    Full text link

    An alternative approach for robot localization inside pipes using RF spatial fadings

    Get PDF
    Accurate robot localization represents a challenge inside pipes due to the particular conditions that characterize this type of environment. Outdoor techniques (GPS in particular) do not work at all inside metal pipes, while traditional indoor localization methods based on camera or laser sensors do not perform well mainly due to a lack of external illumination and distinctive features along pipes. Moreover, humidity and slippery surfaces make wheel odometry unreliable. In this paper, we estimate the localization of a robot along a pipe with an alternative Radio Frequency (RF) approach. We first analyze wireless propagation in metallic pipes and propose a series of setups that allow us to obtain periodic RF spatial fadings (a sort of standing wave periodic pattern), together with the influence of the antenna position and orientation over these fadings. Subsequently, we propose a discrete RF odometry-like method, by means of counting the fadings while traversing them. The transversal fading analysis (number of antennas and cross-section position) makes it possible to increase the resolution of this method. Lastly, the model of the signal is used in a continuous approach serving as an RF map. The proposed localization methods outperform our previous contributions in terms of resolution, accuracy, reliability and robustness. Experimental results demonstrate the effectiveness of the RF-based strategy without the need for a previously known map of the scenario or any substantial modification of the existing infrastructure

    Development and evaluation of low cost 2-d lidar based traffic data collection methods

    Get PDF
    Traffic data collection is one of the essential components of a transportation planning exercise. Granular traffic data such as volume count, vehicle classification, speed measurement, and occupancy, allows managing transportation systems more effectively. For effective traffic operation and management, authorities require deploying many sensors across the network. Moreover, the ascending efforts to achieve smart transportation aspects put immense pressure on planning authorities to deploy more sensors to cover an extensive network. This research focuses on the development and evaluation of inexpensive data collection methodology by using two-dimensional (2-D) Light Detection and Ranging (LiDAR) technology. LiDAR is adopted since it is economical and easily accessible technology. Moreover, its 360-degree visibility and accurate distance information make it more reliable. To collect traffic count data, the proposed method integrates a Continuous Wavelet Transform (CWT), and Support Vector Machine (SVM) into a single framework. Proof-of-Concept (POC) test is conducted in three different places in Newark, New Jersey to examine the performance of the proposed method. The POC test results demonstrate that the proposed method achieves acceptable performances, resulting in 83% ~ 94% accuracy. It is discovered that the proposed method\u27s accuracy is affected by the color of the exterior surface of a vehicle since some colored surfaces do not produce enough reflective rays. It is noticed that the blue and black colors are less reflective, while white-colored surfaces produce high reflective rays. A methodology is proposed that comprises K-means clustering, inverse sensor model, and Kalman filter to obtain trajectories of the vehicles at the intersections. The primary purpose of vehicle detection and tracking is to obtain the turning movement counts at an intersection. A K-means clustering is an unsupervised machine learning technique that clusters the data into different groups by analyzing the smallest mean of a data point from the centroid. The ultimate objective of applying K-mean clustering is to identify the difference between pedestrians and vehicles. An inverse sensor model is a state model of occupancy grid mapping that localizes the detected vehicles on the grid map. A constant velocity model based Kalman filter is defined to track the trajectory of the vehicles. The data are collected from two intersections located in Newark, New Jersey, to study the accuracy of the proposed method. The results show that the proposed method has an average accuracy of 83.75%. Furthermore, the obtained R-squared value for localization of the vehicles on the grid map is ranging between 0.87 to 0.89. Furthermore, a primary cost comparison is made to study the cost efficiency of the developed methodology. The cost comparison shows that the proposed methodology based on 2-D LiDAR technology can achieve acceptable accuracy at a low price and be considered a smart city concept to conduct extensive scale data collection

    Towards basin-scale in-situ characterization of sea-ice using an Autonomous Underwater Glider

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.This thesis presents an Autonomous Underwater Glider (AUG) architecture that is intended for basin-scale unattended survey of Arctic sea-ice. The distinguishing challenge for AUG operations in the Arctic environment is the presence of year-round sea-ice cover which prevents vehicle surfacing for localization updates and shore-side communication. Due to the high cost of operating support vessels in the Arctic, the proposed AUG architecture minimizes external infrastructure requirements to brief and infrequent satellite updates on the order of once per day. This is possible by employing onboard acoustic sensing for sea-ice observation and navigation, along with intelligent management of onboard resources. To enable unattended survey of Arctic sea-ice with an AUG, this thesis proposes a hierarchical acoustics-based sea-ice characterization scheme to perform science data collection and assess environment risk, a multi-factor terrain-aided navigation method that leverages bathymetric features and active ocean current sensing to limit localization error, and a set of energy-optimal propulsive and hotel policies that react to evolving environmental conditions to improve AUG endurance. These methods are evaluated with respect to laboratory experiments and preliminary field data, and future Arctic sea-ice survey mission concepts are discussed.Support for this research was provided through the National Science Foundation Navigating the New Arctic Grant #1839063 and the NASA PSTAR Grant #NNX16AL08G. Additionally, this research was supported by the Walter A. Rosenblith Presidential Fellowship

    Filtering and Tracking for Pedestrian Dead-Reckoning System.

    Full text link
    This thesis proposes a leader-follower system in which a robot, equipped with relatively sophisticated sensors, tracks and follows a human whose equipped with a low-fidelity odometry sensor called a Pedestrian Dead-Reckoning (PDR) device. Such a system is useful for "pack mule" applications, where the robot carries heavy loads for the humans. The proposed system is not dependent upon GPS, which can be jammed or obstructed. This human-following capability is made possible due to several novel contributions. First, we perform an in-depth analysis of our Pedestrian Dead-Reckoning (PDR) system with the Unscented Kalman Filter (UKF) and models of varying complexity. We propose an extension that limits elevation errors, and show that our proposed method reduces errors by 63% compared to a baseline method. We also propose a method for integrating magnetometers into the PDR framework, which automatically and opportunistically calibrates for hard/soft-iron effects and sensor misalignments. In a series of large-scale experiments, we show that this system achieves positional errors of less than 1.9% of the distance traveled. Finally, we propose methods that allow a robot to use LIDAR data to improve the accuracy of the robot's estimate of the human’s trajectory. These methods include: 1) a particle filter method and 2) two multi-hypothesis maximum-likelihood approaches based on stochastic gradient descent optimization. We show that the proposed approaches are able to track human trajectories in several synthetic and real-world datasets.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113500/1/suratkw_1.pd

    Indoor positioning for smartphones without infrastructure and user adaptable

    Get PDF
    Given that the classic solutions for positioning outdoors, such as GPS (Global Positioning System) or GNSS (Global Navigation Satellite System) do not work indoors, there have been emerging multiple alternatives for Indoor Location. Usually these solutions require extensive and complex installations, which involve high costs. In this thesis we present a robust indoor positioning solution for smartphones that maximizes location accuracy while minimizes the required infrastructure. We have considered two main modes of displacement: walking and in a vehicle. Our solution is robust to different users, allows them to carry the phone in different positions and allows to use the device freely while performing different daily activities, such as walking, driving , going up and down stairs, etc. We achieved that by developing a robust indoor positioning system that combines information from multiple sources such as radio frequency readings and inertial sensors
    • …
    corecore