439 research outputs found

    Extended Quantitative Computed Tomography Analysis of Lung Structure and Function

    Get PDF
    Computed tomography (CT) imaging and quantitative CT (QCT) analysis for the study of lung health and disease have been rapidly advanced during the past decades, along with the employment of CT-based computational fluid dynamics (CFD) and machine learning approaches. The work presented in this thesis was devoted to extending the QCT analysis framework from three different perspectives.First, to extend the advanced QCT analysis to more data with undesirably protocolized CT scans, we developed a new deep learning-based automated segmentation of pulmonary lobes, in- corporating z-axis information into the conventional UNet segmentation. The proposed deep learn- ing segmentation, named ZUNet, was successfully applied for QCT analysis of silicosis patients with thick (5 or 10 mm) slices, which used to be excluded in QCT analysis since three-dimensional (3D) volumetric segmentation of the lungs and lobes were hardly successful or not automated. ZUNet outperformed UNet in lobe segmentation of human lungs. In addition, we extended the application of the QCT framework, combining CFD simulations for the entire subjects of the QCT analysis. One-dimensional (1D) CFD simulations of tidal breath- ing have been added to the inspiratory-expiratory CT image matching analysis of 66 asthma pa- tients (M:F=23:43, age=64.4±10.7) for pre- and post-bronchodilator comparison. We aimed to characterize comprehensive airway and lung structure and function relationship in the entire group response and patient-specific response to the bronchodilator. Along with the evidence of large air- way dilatation in the entire asthmatics, the CFD analysis revealed that improvements in regional flow rate fraction, particularly in the right lower lobe (RLL), airway pressure drop, airway resis- tance, and workload of breathing were significantly associated with the degree of large airway dilatation. Finally, we extended the approach using machine learning analysis to integrate numerous QCT variables with clinical features and additional information such as environmental exposure. In pursuit of investigating the effects of particulate matter (PM) exposure on human lung struc- ture and function alteration, principal component analysis (PCA) and k-means clustering iden- tified low, mid, and high exposure groups from directly measured air pollution exposure data of 270 healthy (age=68±10, M:F=15:51), asthma (age=60±12, M:F=39:56), chronic obstructive pulmonary disease (COPD) (age=69±7, M:F=66:10), and idiopathic pulmonary fibrosis (IPF) (age=72±7, M:F=43:10) subjects. Based on the exposure clusters, the RLL segmental airway narrowing was observed in the high exposure group. Various associations were found between the exposure data and about 200 multiscale lung features, from quantitative inspiratory and ex- piratory CT image matching and 1D CFD tidal breathing simulations. To highlight, small PM increases small airway disease in asthma. PM at all sizes decreases inspiratory low attenuation area in COPD and diseases luminal diameter of the RLL segmental airways in IPF

    Computer-Aided Assessment of Tuberculosis with Radiological Imaging: From rule-based methods to Deep Learning

    Get PDF
    Mención Internacional en el título de doctorTuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb.) that produces pulmonary damage due to its airborne nature. This fact facilitates the disease fast-spreading, which, according to the World Health Organization (WHO), in 2021 caused 1.2 million deaths and 9.9 million new cases. Traditionally, TB has been considered a binary disease (latent/active) due to the limited specificity of the traditional diagnostic tests. Such a simple model causes difficulties in the longitudinal assessment of pulmonary affectation needed for the development of novel drugs and to control the spread of the disease. Fortunately, X-Ray Computed Tomography (CT) images enable capturing specific manifestations of TB that are undetectable using regular diagnostic tests, which suffer from limited specificity. In conventional workflows, expert radiologists inspect the CT images. However, this procedure is unfeasible to process the thousands of volume images belonging to the different TB animal models and humans required for a suitable (pre-)clinical trial. To achieve suitable results, automatization of different image analysis processes is a must to quantify TB. It is also advisable to measure the uncertainty associated with this process and model causal relationships between the specific mechanisms that characterize each animal model and its level of damage. Thus, in this thesis, we introduce a set of novel methods based on the state of the art Artificial Intelligence (AI) and Computer Vision (CV). Initially, we present an algorithm to assess Pathological Lung Segmentation (PLS) employing an unsupervised rule-based model which was traditionally considered a needed step before biomarker extraction. This procedure allows robust segmentation in a Mtb. infection model (Dice Similarity Coefficient, DSC, 94%±4%, Hausdorff Distance, HD, 8.64mm±7.36mm) of damaged lungs with lesions attached to the parenchyma and affected by respiratory movement artefacts. Next, a Gaussian Mixture Model ruled by an Expectation-Maximization (EM) algorithm is employed to automatically quantify the burden of Mtb.using biomarkers extracted from the segmented CT images. This approach achieves a strong correlation (R2 ≈ 0.8) between our automatic method and manual extraction. Consequently, Chapter 3 introduces a model to automate the identification of TB lesions and the characterization of disease progression. To this aim, the method employs the Statistical Region Merging algorithm to detect lesions subsequently characterized by texture features that feed a Random Forest (RF) estimator. The proposed procedure enables a selection of a simple but powerful model able to classify abnormal tissue. The latest works base their methodology on Deep Learning (DL). Chapter 4 extends the classification of TB lesions. Namely, we introduce a computational model to infer TB manifestations present in each lung lobe of CT scans by employing the associated radiologist reports as ground truth. We do so instead of using the classical manually delimited segmentation masks. The model adjusts the three-dimensional architecture, V-Net, to a multitask classification context in which loss function is weighted by homoscedastic uncertainty. Besides, the method employs Self-Normalizing Neural Networks (SNNs) for regularization. Our results are promising with a Root Mean Square Error of 1.14 in the number of nodules and F1-scores above 0.85 for the most prevalent TB lesions (i.e., conglomerations, cavitations, consolidations, trees in bud) when considering the whole lung. In Chapter 5, we present a DL model capable of extracting disentangled information from images of different animal models, as well as information of the mechanisms that generate the CT volumes. The method provides the segmentation mask of axial slices from three animal models of different species employing a single trained architecture. It also infers the level of TB damage and generates counterfactual images. So, with this methodology, we offer an alternative to promote generalization and explainable AI models. To sum up, the thesis presents a collection of valuable tools to automate the quantification of pathological lungs and moreover extend the methodology to provide more explainable results which are vital for drug development purposes. Chapter 6 elaborates on these conclusions.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidenta: María Jesús Ledesma Carbayo.- Secretario: David Expósito Singh.- Vocal: Clarisa Sánchez Gutiérre

    Quantitative Evaluation of Pulmonary Emphysema Using Magnetic Resonance Imaging and x-ray Computed Tomography

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality affecting at least 600 million people worldwide. The most widely used clinical measurements of lung function such as spirometry and plethysmography are generally accepted for diagnosis and monitoring of the disease. However, these tests provide only global measures of lung function and they are insensitive to early disease changes. Imaging tools that are currently available have the potential to provide regional information about lung structure and function but at present are mainly used for qualitative assessment of disease and disease progression. In this thesis, we focused on the application of quantitative measurements of lung structure derived from 1H magnetic resonance imaging (MRI) and high resolution computed tomography (CT) in subjects diagnosed with COPD by a physician. Our results showed that significant and moderately strong relationship exists between 1H signal intensity (SI) and 3He apparent diffusion coefficient (ADC), as well as between 1H SI and CT measurements of emphysema. This suggests that these imaging methods may be quantifying the same tissue changes in COPD, and that pulmonary 1H SI may be used effectively to monitor emphysema as a complement to CT and noble gas MRI. Additionally, our results showed that objective multi-threshold analysis of CT images for emphysema scoring that takes into account the frequency distribution of each Hounsfield unit (HU) threshold was effective in correctly classifying the patient into COPD and healthy subgroups. Finally, we found a significant correlation between whole lung average subjective and objective emphysema scores with high inter-observer agreement. It is concluded that 1H MRI and high resolution CT can be used to quantitatively evaluate lung tissue alterations in COPD subjects

    3-D lung deformation and function from respiratory-gated 4-D x-ray CT images : application to radiation treatment planning.

    Get PDF
    Many lung diseases or injuries can cause biomechanical or material property changes that can alter lung function. While the mechanical changes associated with the change of the material properties originate at a regional level, they remain largely asymptomatic and are invisible to global measures of lung function until they have advanced significantly and have aggregated. In the realm of external beam radiation therapy of patients suffering from lung cancer, determination of patterns of pre- and post-treatment motion, and measures of regional and global lung elasticity and function are clinically relevant. In this dissertation, we demonstrate that 4-D CT derived ventilation images, including mechanical strain, provide an accurate and physiologically relevant assessment of regional pulmonary function which may be incorporated into the treatment planning process. Our contributions are as follows: (i) A new volumetric deformable image registration technique based on 3-D optical flow (MOFID) has been designed and implemented which permits the possibility of enforcing physical constraints on the numerical solutions for computing motion field from respiratory-gated 4-D CT thoracic images. The proposed optical flow framework is an accurate motion model for the thoracic CT registration problem. (ii) A large displacement landmark-base elastic registration method has been devised for thoracic CT volumetric image sets containing large deformations or changes, as encountered for example in registration of pre-treatment and post-treatment images or multi-modality registration. (iii) Based on deformation maps from MOFIO, a novel framework for regional quantification of mechanical strain as an index of lung functionality has been formulated for measurement of regional pulmonary function. (iv) In a cohort consisting of seven patients with non-small cell lung cancer, validation of physiologic accuracy of the 4-0 CT derived quantitative images including Jacobian metric of ventilation, Vjac, and principal strains, (V?1, V?2, V?3, has been performed through correlation of the derived measures with SPECT ventilation and perfusion scans. The statistical correlations with SPECT have shown that the maximum principal strain pulmonary function map derived from MOFIO, outperforms all previously established ventilation metrics from 40-CT. It is hypothesized that use of CT -derived ventilation images in the treatment planning process will help predict and prevent pulmonary toxicity due to radiation treatment. It is also hypothesized that measures of regional and global lung elasticity and function obtained during the course of treatment may be used to adapt radiation treatment. Having objective methods with which to assess pre-treatment global and regional lung function and biomechanical properties, the radiation treatment dose can potentially be escalated to improve tumor response and local control

    Guest Editorial Special Issue on Medical Imaging and Image Computing in Computational Physiology

    Get PDF
    International audienceThe January 2013 Special Issue of IEEE transactions on medical imaging discusses papers on medical imaging and image computing in computational physiology. Aslanid and co-researchers present an experimental technique based on stained micro computed tomography (CT) images to construct very detailed atrial models of the canine heart. The paper by Sebastian proposes a model of the cardiac conduction system (CCS) based on structural information derived from stained calf tissue. Ho, Mithraratne and Hunter present a numerical simulation of detailed cerebral venous flow. The third category of papers deals with computational methods for simulating medical imagery and incorporate knowledge of imaging physics and physiology/biophysics. The work by Morales showed how the combination of device modeling and virtual deployment, in addition to patient-specific image-based anatomical modeling, can help to carry out patient-specific treatment plans and assess alternative therapeutic strategies

    Pulmonary Image Segmentation and Registration Algorithms: Towards Regional Evaluation of Obstructive Lung Disease

    Get PDF
    Pulmonary imaging, including pulmonary magnetic resonance imaging (MRI) and computed tomography (CT), provides a way to sensitively and regionally measure spatially heterogeneous lung structural-functional abnormalities. These unique imaging biomarkers offer the potential for better understanding pulmonary disease mechanisms, monitoring disease progression and response to therapy, and developing novel treatments for improved patient care. To generate these regional lung structure-function measurements and enable broad clinical applications of quantitative pulmonary MRI and CT biomarkers, as a first step, accurate, reproducible and rapid lung segmentation and registration methods are required. In this regard, we first developed a 1H MRI lung segmentation algorithm that employs complementary hyperpolarized 3He MRI functional information for improved lung segmentation. The 1H-3He MRI joint segmentation algorithm was formulated as a coupled continuous min-cut model and solved through convex relaxation, for which a dual coupled continuous max-flow model was proposed and a max-flow-based efficient numerical solver was developed. Experimental results on a clinical dataset of 25 chronic obstructive pulmonary disease (COPD) patients ranging in disease severity demonstrated that the algorithm provided rapid lung segmentation with high accuracy, reproducibility and diminished user interaction. We then developed a general 1H MRI left-right lung segmentation approach by exploring the left-to-right lung volume proportion prior. The challenging volume proportion-constrained multi-region segmentation problem was approximated through convex relaxation and equivalently represented by a max-flow model with bounded flow conservation conditions. This gave rise to a multiplier-based high performance numerical implementation based on convex optimization theories. In 20 patients with mild- to-moderate and severe asthma, the approach demonstrated high agreement with manual segmentation, excellent reproducibility and computational efficiency. Finally, we developed a CT-3He MRI deformable registration approach that coupled the complementary CT-1H MRI registration. The joint registration problem was solved by exploring optical-flow techniques, primal-dual analyses and convex optimization theories. In a diverse group of patients with asthma and COPD, the registration approach demonstrated lower target registration error than single registration and provided fast regional lung structure-function measurements that were strongly correlated with a reference method. Collectively, these lung segmentation and registration algorithms demonstrated accuracy, reproducibility and workflow efficiency that all may be clinically-acceptable. All of this is consistent with the need for broad and large-scale clinical applications of pulmonary MRI and CT
    • …
    corecore