9,212 research outputs found

    An Empirical Evaluation of Deep Learning on Highway Driving

    Full text link
    Numerous groups have applied a variety of deep learning techniques to computer vision problems in highway perception scenarios. In this paper, we presented a number of empirical evaluations of recent deep learning advances. Computer vision, combined with deep learning, has the potential to bring about a relatively inexpensive, robust solution to autonomous driving. To prepare deep learning for industry uptake and practical applications, neural networks will require large data sets that represent all possible driving environments and scenarios. We collect a large data set of highway data and apply deep learning and computer vision algorithms to problems such as car and lane detection. We show how existing convolutional neural networks (CNNs) can be used to perform lane and vehicle detection while running at frame rates required for a real-time system. Our results lend credence to the hypothesis that deep learning holds promise for autonomous driving.Comment: Added a video for lane detectio

    Pedestrian lane detection in unstructured scenes for assistive navigation

    Get PDF
    Automatic detection of the pedestrian lane in a scene is an important task in assistive and autonomous navigation. This paper presents a vision-based algorithm for pedestrian lane detection in unstructured scenes, where lanes vary significantly in color, texture, and shape and are not indicated by any painted markers. In the proposed method, a lane appearance model is constructed adaptively from a sample image region, which is identified automatically from the image vanishing point. This paper also introduces a fast and robust vanishing point estimation method based on the color tensor and dominant orientations of color edge pixels. The proposed pedestrian lane detection method is evaluated on a new benchmark dataset that contains images from various indoor and outdoor scenes with different types of unmarked lanes. Experimental results are presented which demonstrate its efficiency and robustness in comparison with several existing methods

    Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection

    Full text link
    We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.Comment: Accepted for publication at German Conference on Pattern Recognition (GCPR) 2017. This research was supported by German Research Foundation DFG within Priority Research Programme 1894 "Volunteered Geographic Information: Interpretation, Visualisation and Social Computing
    • …
    corecore