424 research outputs found

    Ground Delay Program Analytics with Behavioral Cloning and Inverse Reinforcement Learning

    Get PDF
    We used historical data to build two types of model that predict Ground Delay Program implementation decisions and also produce insights into how and why those decisions are made. More specifically, we built behavioral cloning and inverse reinforcement learning models that predict hourly Ground Delay Program implementation at Newark Liberty International and San Francisco International airports. Data available to the models include actual and scheduled air traffic metrics and observed and forecasted weather conditions. We found that the random forest behavioral cloning models we developed are substantially better at predicting hourly Ground Delay Program implementation for these airports than the inverse reinforcement learning models we developed. However, all of the models struggle to predict the initialization and cancellation of Ground Delay Programs. We also investigated the structure of the models in order to gain insights into Ground Delay Program implementation decision making. Notably, characteristics of both types of model suggest that GDP implementation decisions are more tactical than strategic: they are made primarily based on conditions now or conditions anticipated in only the next couple of hours

    Supervised Learning Applied to Air Traffic Trajectory Classification

    Get PDF
    Given the recent increase of interest in introducing new vehicle types and missions into the National Airspace System, a transition towards a more autonomous air traffic control system is required in order to enable and handle increased density and complexity. This paper presents an exploratory effort of the needed autonomous capabilities by exploring supervised learning techniques in the context of aircraft trajectories. In particular, it focuses on the application of machine learning algorithms and neural network models to a runway recognition trajectory-classification study. It investigates the applicability and effectiveness of various classifiers using datasets containing trajectory records for a month of air traffic. A feature importance and sensitivity analysis are conducted to challenge the chosen time-based datasets and the ten selected features. The study demonstrates that classification accuracy levels of 90% and above can be reached in less than 40 seconds of training for most machine learning classifiers when one track data point, described by the ten selected features at a particular time step, per trajectory is used as input. It also shows that neural network models can achieve similar accuracy levels but at higher training time costs

    Towards Autonomous Aviation Operations: What Can We Learn from Other Areas of Automation?

    Get PDF
    Rapid advances in automation has disrupted and transformed several industries in the past 25 years. Automation has evolved from regulation and control of simple systems like controlling the temperature in a room to the autonomous control of complex systems involving network of systems. The reason for automation varies from industry to industry depending on the complexity and benefits resulting from increased levels of automation. Automation may be needed to either reduce costs or deal with hazardous environment or make real-time decisions without the availability of humans. Space autonomy, Internet, robotic vehicles, intelligent systems, wireless networks and power systems provide successful examples of various levels of automation. NASA is conducting research in autonomy and developing plans to increase the levels of automation in aviation operations. This paper provides a brief review of levels of automation, previous efforts to increase levels of automation in aviation operations and current level of automation in the various tasks involved in aviation operations. It develops a methodology to assess the research and development in modeling, sensing and actuation needed to advance the level of automation and the benefits associated with higher levels of automation. Section II describes provides an overview of automation and previous attempts at automation in aviation. Section III provides the role of automation and lessons learned in Space Autonomy. Section IV describes the success of automation in Intelligent Transportation Systems. Section V provides a comparison between the development of automation in other areas and the needs of aviation. Section VI provides an approach to achieve increased automation in aviation operations based on the progress in other areas. The final paper will provide a detailed analysis of the benefits of increased automation for the Traffic Flow Management (TFM) function in aviation operations

    Activity Report 2022

    Get PDF

    Using learning from demonstration to enable automated flight control comparable with experienced human pilots

    Get PDF
    Modern autopilots fall under the domain of Control Theory which utilizes Proportional Integral Derivative (PID) controllers that can provide relatively simple autonomous control of an aircraft such as maintaining a certain trajectory. However, PID controllers cannot cope with uncertainties due to their non-adaptive nature. In addition, modern autopilots of airliners contributed to several air catastrophes due to their robustness issues. Therefore, the aviation industry is seeking solutions that would enhance safety. A potential solution to achieve this is to develop intelligent autopilots that can learn how to pilot aircraft in a manner comparable with experienced human pilots. This work proposes the Intelligent Autopilot System (IAS) which provides a comprehensive level of autonomy and intelligent control to the aviation industry. The IAS learns piloting skills by observing experienced teachers while they provide demonstrations in simulation. A robust Learning from Demonstration approach is proposed which uses human pilots to demonstrate the task to be learned in a flight simulator while training datasets are captured. The datasets are then used by Artificial Neural Networks (ANNs) to generate control models automatically. The control models imitate the skills of the experienced pilots when performing the different piloting tasks while handling flight uncertainties such as severe weather conditions and emergency situations. Experiments show that the IAS performs learned skills and tasks with high accuracy even after being presented with limited examples which are suitable for the proposed approach that relies on many single-hidden-layer ANNs instead of one or few large deep ANNs which produce a black-box that cannot be explained to the aviation regulators. The results demonstrate that the IAS is capable of imitating low-level sub-cognitive skills such as rapid and continuous stabilization attempts in stormy weather conditions, and high-level strategic skills such as the sequence of sub-tasks necessary to takeoff, land, and handle emergencies

    Special Topics in Information Technology

    Get PDF
    This open access book presents outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the best theses defended in 2021-22 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    The Internet of Everything

    Get PDF
    In the era before IoT, the world wide web, internet, web 2.0 and social media made people’s lives comfortable by providing web services and enabling access personal data irrespective of their location. Further, to save time and improve efficiency, there is a need for machine to machine communication, automation, smart computing and ubiquitous access to personal devices. This need gave birth to the phenomenon of Internet of Things (IoT) and further to the concept of Internet of Everything (IoE)

    A comparison among deep learning techniques in an autonomous driving context

    Get PDF
    Al giorno d’oggi, l’intelligenza artificiale è uno dei campi di ricerca che sta ricevendo sempre più attenzioni. Il miglioramento della potenza computazionale a disposizione dei ricercatori e sviluppatori sta rinvigorendo tutto il potenziale che era stato espresso a livello teorico agli albori dell’Intelligenza Artificiale. Tra tutti i campi dell’Intelligenza Artificiale, quella che sta attualmente suscitando maggiore interesse è la guida autonoma. Tantissime case automobilistiche e i più illustri college americani stanno investendo sempre più risorse su questa tecnologia. La ricerca e la descrizione dell’ampio spettro delle tecnologie disponibili per la guida autonoma è parte del confronto svolto in questo elaborato. Il caso di studio si incentra su un’azienda che partendo da zero, vorrebbe elaborare un sistema di guida autonoma senza dati, in breve tempo ed utilizzando solo sensori fatti da loro. Partendo da reti neurali e algoritmi classici, si è arrivati ad utilizzare algoritmi come A3C per descrivere tutte l’ampio spettro di possibilità. Le tecnologie selezionate verranno confrontate in due esperimenti. Il primo è un esperimento di pura visione artificiale usando DeepTesla. In questo esperimento verranno confrontate tecnologie quali le tradizionali tecniche di visione artificiale, CNN e CNN combinate con LSTM. Obiettivo è identificare quale algoritmo ha performance migliori elaborando solo immagini. Il secondo è un esperimento su CARLA, un simulatore basato su Unreal Engine. In questo esperimento, i risultati ottenuti in ambiente simulato con CNN combinate con LSTM, verranno confrontati con i risultati ottenuti con A3C. Obiettivo sarà capire se queste tecniche sono in grado di muoversi in autonomia utilizzando i dati forniti dal simulatore. Il confronto mira ad identificare le criticità e i possibili miglioramenti futuri di ciascuno degli algoritmi proposti in modo da poter trovare una soluzione fattibile che porta ottimi risultati in tempi brevi

    Data-driven prognostics and logistics optimisation:A deep learning journey

    Get PDF
    • …
    corecore