243 research outputs found

    Ground Confluence Prover based on Rewriting Induction

    Get PDF
    Ground confluence of term rewriting systems guarantees that all ground terms are confluent. Recently, interests in proving confluence of term rewriting systems automatically has grown, and confluence provers have been developed. But they mainly focus on confluence and not ground confluence. In fact, little interest has been paid to developing tools for proving ground confluence automatically. We report an implementation of a ground confluence prover based on rewriting induction, which is a method originally developed for proving inductive theorems

    Improving Rewriting Induction Approach for Proving Ground Confluence

    Get PDF
    In (Aoto&Toyama, FSCD 2016), a method to prove ground confluence of many-sorted term rewriting systems based on rewriting induction is given. In this paper, we give several methods that add wider flexibility to the rewriting induction approach for proving ground confluence. Firstly, we give a method to deal with the case in which suitable rules are not presented in the input system. Our idea is to construct additional rewrite rules that supplement or replace existing rules in order to obtain a set of rules that is adequate for applying rewriting induction. Secondly, we give a method to deal with non-orientable constructor rules. This is accomplished by extending the inference system of rewriting induction and giving a sufficient criterion for the correctness of the system. Thirdly, we give a method to deal with disproving ground confluence. The presented methods are implemented in our ground confluence prover AGCP and experiments are reported. Our experiments reveal the presented methods are effective to deal with problems for which state-of-the-art ground confluence provers can not handle

    Deciding Confluence and Normal Form Properties of Ground Term Rewrite Systems Efficiently

    Full text link
    It is known that the first-order theory of rewriting is decidable for ground term rewrite systems, but the general technique uses tree automata and often takes exponential time. For many properties, including confluence (CR), uniqueness of normal forms with respect to reductions (UNR) and with respect to conversions (UNC), polynomial time decision procedures are known for ground term rewrite systems. However, this is not the case for the normal form property (NFP). In this work, we present a cubic time algorithm for NFP, an almost cubic time algorithm for UNR, and an almost linear time algorithm for UNC, improving previous bounds. We also present a cubic time algorithm for CR

    Datatype defining rewrite systems for naturals and integers

    Get PDF

    Quantifier-Free Interpolation of a Theory of Arrays

    Get PDF
    The use of interpolants in model checking is becoming an enabling technology to allow fast and robust verification of hardware and software. The application of encodings based on the theory of arrays, however, is limited by the impossibility of deriving quantifier- free interpolants in general. In this paper, we show that it is possible to obtain quantifier-free interpolants for a Skolemized version of the extensional theory of arrays. We prove this in two ways: (1) non-constructively, by using the model theoretic notion of amalgamation, which is known to be equivalent to admit quantifier-free interpolation for universal theories; and (2) constructively, by designing an interpolating procedure, based on solving equations between array updates. (Interestingly, rewriting techniques are used in the key steps of the solver and its proof of correctness.) To the best of our knowledge, this is the first successful attempt of computing quantifier- free interpolants for a variant of the theory of arrays with extensionality

    Knuth-Bendix Completion with Modern Termination Checking, Master\u27s Thesis, August 2006

    Get PDF
    Knuth-Bendix completion is a technique for equational automated theorem proving based on term rewriting. This classic procedure is parametrized by an equational theory and a (well-founded) reduction order used at runtime to ensure termination of intermediate rewriting systems. Any reduction order can be used in principle, but modern completion tools typically implement only a few classes of such orders (e.g., recursive path orders and polynomial orders). Consequently, the theories for which completion can possibly succeed are limited to those compatible with an instance of an implemented class of orders. Finding and specifying a compatible order, even among a small number of classes, is challenging in practice and crucial to the success of the method. In this thesis, a new variant on the Knuth-Bendix completion procedure is developed in which no order is provided by the user. Modern termination-checking methods are instead used to verify termination of rewriting systems. We prove the new method correct and also present an implementation called Slothrop which obtains solutions for theories that do not admit typical orders and that have not previously been solved by a fully automatic tool
    • …
    corecore