3,110 research outputs found

    Influence of Force-Length Relationship and Task-Specific Constraints on Finger Force-Generating Capacities

    Full text link
    Grip strength loss in extended and flexed wrist postures has been explained by reduced force-generating capacities of extrinsic finger flexor resulting from non-optimal length, owing to the force-length relationship. Recent works suggested that other muscles, especially wrist extensors, participate in this grip strength loss. The objective of this study was to clarify the role of the force-length relationship in finger force production. 18 participants performed maximal isometric finger force production during pinch grip (Pinch) and four-finger pressing (Press) tasks in four different wrist postures (extended, flexed, neutral, spontaneous). The maximum finger force (MFF), finger and wrist joint angles, as well as activation of four muscles were determined using dynamometry, motion capture, and electromyography. The force and length of the four muscles were estimated from joint angles and muscle activation using a musculoskeletal model. MFF decreased for flexed wrist during Pinch but remained stable across wrist postures during Press. The results suggested that the loss of pinch grip force in deviated wrist posture is partially related to force-length relationship of finger extensors. In opposition, MFF during Press was not influenced by the modulation of muscle capacities but was probably first limited by mechanical and neural factors related to finger interdependenceComment: Annals of Biomedical Engineering, 202

    Effect of Sensory Feedback from the Proximal Upper Limb on Voluntary Isometric Finger Flexion and Extension in Hemiparetic Stroke Subjects

    Get PDF
    This study investigated the potential influence of proximal sensory feedback on voluntary distal motor activity in the paretic upper limb of hemiparetic stroke survivors and the potential effect of voluntary distal motor activity on proximal muscle activity. Ten stroke subjects and 10 neurologically intact control subjects performed maximum voluntary isometric flexion and extension, respectively, at the metacarpophalangeal (MCP) joints of the fingers in two static arm postures and under three conditions of electrical stimulation of the arm. The tasks were quantified in terms of maximum MCP torque [MCP flexion (MCPflex) or MCP extension (MCPext)] and activity of targeted (flexor digitorum superficialis or extensor digitorum communis) and nontargeted upper limb muscles. From a previous study on the MCP stretch reflex poststroke, we expected stroke subjects to exhibit a modulation of voluntary MCP torque production by arm posture and electrical stimulation and increased nontargeted muscle activity. Posture 1 (flexed elbow, neutral shoulder) led to greater MCPflex in stroke subjects than posture 2 (extended elbow, flexed shoulder). Electrical stimulation did not influence MCPflex or MCPext in either subject group. In stroke subjects, posture 1 led to greater nontargeted upper limb flexor activity during MCPflex and to greater elbow flexor and extensor activity during MCPext. Stroke subjects exhibited greater elbow flexor activity during MCPflex and greater elbow flexor and extensor activity during MCPext than control subjects. The results suggest that static arm posture can modulate voluntary distal motor activity and accompanying muscle activity in the paretic upper limb poststroke

    Task-dependent Modulation of Cortical Excitability and Balance Control in Individuals with Post-concussion Syndrome

    Get PDF
    In most cases, symptoms resolve between 7-10 days post-concussion. However, in 10-15% of the concussed population, symptoms can remain unresolved for months to years following the head injury. The purpose of this thesis was two-fold, and was broken up into two studies, where the same individuals participated in both studies. The purpose of the first study was to quantify the differences in balance control between individuals with PCS (i.e., had been experiencing symptoms for \u3c30 days) and non-concussed individuals during a lower-limb reaching task. Participants completed a static balance assessment before and after a lower-limb reaching task, which incorporated a Go/No-Go paradigm. Results from this study revealed no differences in the static stability assessments, however, individuals with PCS demonstrated increased medial-lateral COP displacement as well as greater trunk pitch during the reaching task. Overall, the findings reveal persistent balance impairments in individuals with PCS, which may put this population at an increased risk of further injury. The purpose of the second study was to assess task-dependent modulation of cortical excitability prior to planned index finger abduction contractions comparing a non-concussed population to a population with PCS. The protocol in this study consisted of both single and paired-pulse transcranial magnetic stimulation (TMS) which was applied prior to the beginning of 3 different tasks (i.e., a rest condition with no plan to contract, a precision contraction, and a powerful contraction). In addition to the three tasks, participants also had to respond to a Go/No-Go cue. The results of this study revealed an increase in excitability prior to a precision contraction in both non-concussed and PCS groups. No differences in task-dependent modulation were found between the two groups with respect to intracortical facilitation and inhibition, however a negative correlation between number of symptoms reported (SCAT3 symptom evaluation) and intracortical facilitation was revealed. The increase in corticospinal excitability prior to a precision contraction was not explained by the two cortical mechanisms we assessed and may therefore be due to spinal modulation or a different cortical mechanism. Overall, based on the results from this thesis, it appears that individuals with PCS have balance impairments, which may be a result of an inability to maximally activate their postural muscles. Furthermore, it appears that those individuals who reported a higher number of symptoms had greater reductions in intracortical facilitation, likely reflecting the heterogeneity of this clinical group

    A review and consideration on the kinematics of reach-to-grasp movements in macaque monkeys

    Get PDF
    The bases for understanding the neuronal mechanisms that underlie the control of reach-to-grasp movements among nonhuman primates, particularly macaques, has been widely studied. However, only a few kinematic descriptions of their prehensile actions are available. A thorough understanding of macaques' prehensile movements is manifestly critical, in light of their role in biomedical research as valuable models for studying neuromotor disorders and brain mechanisms, as well as for developing brain-machine interfaces to facilitate arm control. This article aims to review the current state of knowledge on the kinematics of grasping movements that macaques perform in naturalistic, semi-naturalistic, and laboratory settings, to answer the following questions: Are kinematic signatures affected by the context within which the movement is performed? In what ways is kinematics of humans' and macaques' prehensile actions similar/dissimilar? Our analysis reflects the challenges involved in making comparisons across settings and species due to the heterogeneous picture in terms of the number of subjects, stimuli, conditions, and hands used. The kinematics of free-ranging macaques are characterized by distinctive features that are exhibited neither by macaques in laboratory setting nor human subjects. The temporal incidence of key kinematic landmarks diverges significantly between species, indicating disparities in the overall organization of movement. Given such complexities, we attempt a synthesis of extant body of evidence, intending to generate some significant implications for directions that future research might take, to recognize the remaining gaps and pursue the insights and resolutions to generate an interpretation of movement kinematics that accounts for all settings and subjects

    Effects of carpal tunnel syndrome on force coordination and muscle coherence during precision pinch

    Get PDF
    Carpal tunnel syndrome (CTS), caused by entrapment of the median nerve in the carpal tunnel, impairs hand function including dexterous manipulation. The purpose of this study was to investigate the effects of CTS on force coordination and muscle coherence during low-intensity sustained precision pinch while the wrist assumed different postures. Twenty subjects (10 CTS patients and 10 asymptomatic controls) participated in this study. An instrumented pinch device was used to measure the thumb and index finger forces while simultaneously collecting surface electromyographic activities of the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) muscles. Subjects performed a sustained precision pinch at 10% maximum pinch force for 15 sec with the wrist stabilized at 30° extension, neutral, or 30° flexion using customized splints. The force discrepancy and the force coordination angle between the thumb and index finger forces were calculated, as well as the β-band (15-30 Hz) coherence between APB and FDI. The index finger applied greater force than the thumb (p 0.05). The directional force coordination was not significantly affected by wrist posture or CTS (p > 0.05). In general, digit force coordination during precision pinch seems to be sensitive to wrist flexion, but is not affected by CTS. The β-band muscular coherence was increased by wrist flexion for CTS patients (p < 0.05), which could be a compensatory mechanism for the flexion-induced exacerbation of CTS symptoms. This study demonstrates that wrist flexion negatively influences muscle and force coordination in CTS patients supporting the avoidance of flexion posture for symptom exacerbation and functional performance

    Human left ventral premotor cortex mediates matching of hand posture to object use

    Get PDF
    Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP) has been identified as the anterior part of the intraparietal sulcus (aIPS), whereas the putative human equivalent of the monkey frontal region (F5) is located in the ventral part of the premotor cortex (vPMC). Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS), the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA) 44). We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands

    Scalability of the Muscular Action in a Parametric 3D Model of the Index Finger

    Get PDF
    A method for scaling the muscle action is proposed and used to achieve a 3D inverse dynamic model of the human finger with all its components scalable. This method is based on scaling the PCSA (physiological cross-sectional area) in a Hill muscle model. Different anthropometric parameters and maximal grip force data have been measured and their correlations have been analysed and used for scaling the PCSA of each muscle. A linear relationship between the normalised PCSA and the product of the length and breadth of the hand has been finally used for scaling, with a slope of 0.01315 cm-2, with the length and breadth of the hand expressed in centimetres. The parametric muscle model has been included in a parametric finger model previously developed by the authors, and it has been validated reproducing the results of an experiment in which subjects from different population groups exerted maximal voluntary forces with their index finger in a controlled postur

    The Modulation of Corticospinal Excitability during Motor Imagery of Actions with Objects

    Get PDF
    We investigated whether corticospinal excitability during motor imagery of actions (the power or the pincer grip) with objects was influenced by actually touching objects (tactile input) and by the congruency of posture with the imagined action (proprioceptive input). Corticospinal excitability was assessed by monitoring motor evoked potentials (MEPs) in the first dorsal interosseous following transcranial magnetic stimulation over the motor cortex. MEPs were recorded during imagery of the power grip of a larger-sized ball (7 cm) or the pincer grip of a smaller-sized ball (3 cm)—with or without passively holding the larger-sized ball with the holding posture or the smaller-sized ball with the pinching posture. During imagery of the power grip, MEPs amplitude was increased only while the actual posture was the same as the imagined action (the holding posture). On the other hand, during imagery of the pincer grip while touching the ball, MEPs amplitude was enhanced in both postures. To examine the pure effect of touching (tactile input), we recorded MEPs during imagery of the power and pincer grip while touching various areas of an open palm with a flat foam pad. The MEPs amplitude was not affected by the palmer touching. These findings suggest that corticospinal excitability during imagery with an object is modulated by actually touching an object through the combination of tactile and proprioceptive inputs

    From Parallel Sequence Representations to Calligraphic Control: A Conspiracy of Neural Circuits

    Full text link
    Calligraphic writing presents a rich set of challenges to the human movement control system. These challenges include: initial learning, and recall from memory, of prescribed stroke sequences; critical timing of stroke onsets and durations; fine control of grip and contact forces; and letter-form invariance under voluntary size scaling, which entails fine control of stroke direction and amplitude during recruitment and derecruitment of musculoskeletal degrees of freedom. Experimental and computational studies in behavioral neuroscience have made rapid progress toward explaining the learning, planning and contTOl exercised in tasks that share features with calligraphic writing and drawing. This article summarizes computational neuroscience models and related neurobiological data that reveal critical operations spanning from parallel sequence representations to fine force control. Part one addresses stroke sequencing. It treats competitive queuing (CQ) models of sequence representation, performance, learning, and recall. Part two addresses letter size scaling and motor equivalence. It treats cursive handwriting models together with models in which sensory-motor tmnsformations are performed by circuits that learn inverse differential kinematic mappings. Part three addresses fine-grained control of timing and transient forces, by treating circuit models that learn to solve inverse dynamics problems.National Institutes of Health (R01 DC02852
    • …
    corecore