70,420 research outputs found

    Mass transfer with complex reversible chemical reactions I. Single reversible chemical reaction

    Get PDF
    An improved numerical technique was used in order to develop an absorption model with which it is possible to calculate rapidly absorption rates for the phenomenon of mass transfer accompanied by a complex reversible chemical reaction. This model can be applied for the calculation of the mass transfer rates (and enhancement factors) for a wide range of processes and conditions, for both film model and penetration model, complex kinetic expressions and equilibrium reactions. With the aid of this method it is demonstrated that reversibility has a substantial effect on the absorption rate. Approximate analytical solutions for the calculation of the mass transfer rates presented in literature are checked for their validity. All approximations are of restricted use and can be applied only for a limited number of reactions and it is desirable to check the approximation with the aid of a numerical solution before it is used for mass transfer calculations. The linearization method of Hikita and Asai (Kagaku Kogaku 11, 823¿830, 1963) cannot be applied generally for reversible reactions and therefore can lead to erroneous results. Experimentally determined absorption rates of H2S and CO2in various aqueous alkanolamine solutions can be predicted satisfactorily for the several mass transfer regimes studied

    Representation and use of chemistry in the global electronic age.

    Get PDF
    We present an overview of the current state of public semantic chemistry and propose new approaches at a strategic and a detailed level. We show by example how a model for a Chemical Semantic Web can be constructed using machine-processed data and information from journal articles.This manuscript addresses questions of robotic access to data and its automatic re-use, including the role of Open Access archival of data. This is a pre-refereed preprint allowed by the publisher's (Royal Soc. Chemistry) Green policy. The author's preferred manuscript is an HTML hyperdocument with ca. 20 links to images, some of which are JPEgs and some of which are SVG (scalable vector graphics) including animations. There are also links to molecules in CML, for which the Jmol viewer is recommended. We susgeest that readers who wish to see the full glory of the manuscript, download the Zipped version and unpack on their machine. We also supply a PDF and DOC (Word) version which obviously cannot show the animations, but which may be the best palce to start, particularly for those more interested in the text

    Prediction of the Thrust Performance and the Flowfield of Liquid Rocket Engines

    Get PDF
    In an effort to improve the current solutions in the design and analysis of liquid propulsive engines, a computational fluid dynamics (CFD) model capable of calculating the reacting flows from the combustion chamber, through the nozzle to the external plume, was developed. The Space Shuttle Main Engine (SSME) fired at sea level, was investigated as a sample case. The CFD model, FDNS, is a pressure based, non-staggered grid, viscous/inviscid, ideal gas/real gas, reactive code. An adaptive upwinding differencing scheme is employed for the spatial discretization. The upwind scheme is based on fourth order central differencing with fourth order damping for smooth regions, and second order central differencing with second order damping for shock capturing. It is equipped with a CHMQGM equilibrium chemistry algorithm and a PARASOL finite rate chemistry algorithm using the point implicit method. The computed flow results and performance compared well with those of other standard codes and engine hot fire test data. In addition, the transient nozzle flowfield calculation was also performed to demonstrate the ability of FDNS in capturing the flow separation during the startup process

    Achieving Extreme Resolution in Numerical Cosmology Using Adaptive Mesh Refinement: Resolving Primordial Star Formation

    Full text link
    As an entry for the 2001 Gordon Bell Award in the "special" category, we describe our 3-d, hybrid, adaptive mesh refinement (AMR) code, Enzo, designed for high-resolution, multiphysics, cosmological structure formation simulations. Our parallel implementation places no limit on the depth or complexity of the adaptive grid hierarchy, allowing us to achieve unprecedented spatial and temporal dynamic range. We report on a simulation of primordial star formation which develops over 8000 subgrids at 34 levels of refinement to achieve a local refinement of a factor of 10^12 in space and time. This allows us to resolve the properties of the first stars which form in the universe assuming standard physics and a standard cosmological model. Achieving extreme resolution requires the use of 128-bit extended precision arithmetic (EPA) to accurately specify the subgrid positions. We describe our EPA AMR implementation on the IBM SP2 Blue Horizon system at the San Diego Supercomputer Center.Comment: 23 pages, 5 figures. Peer reviewed technical paper accepted to the proceedings of Supercomputing 2001. This entry was a Gordon Bell Prize finalist. For more information visit http://www.TomAbel.com/GB

    Development of the adjoint of GEOS-Chem

    Get PDF
    We present the adjoint of the global chemical transport model GEOS-Chem, focusing on the chemical and thermodynamic relationships between sulfate – ammonium – nitrate aerosols and their gas-phase precursors. The adjoint model is constructed from a combination of manually and automatically derived discrete adjoint algorithms and numerical solutions to continuous adjoint equations. Explicit inclusion of the processes that govern secondary formation of inorganic aerosol is shown to afford efficient calculation of model sensitivities such as the dependence of sulfate and nitrate aerosol concentrations on emissions of SOx, NOx, and NH3. The adjoint model is extensively validated by comparing adjoint to finite difference sensitivities, which are shown to agree within acceptable tolerances; most sets of comparisons have a nearly 1:1 correlation and R2>0.9. We explore the robustness of these results, noting how insufficient observations or nonlinearities in the advection routine can degrade the adjoint model performance. The potential for inverse modeling using the adjoint of GEOS-Chem is assessed in a data assimilation framework through a series of tests using simulated observations, demonstrating the feasibility of exploiting gas- and aerosol-phase measurements for optimizing emission inventories of aerosol precursors

    Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    Get PDF
    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas¿liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a Lagrangian framework, while accounting for bubble¿bubble and bubble¿wall interactions via an encounter model. The mass transfer rate is calculated for each individual bubble using a surface renewal model accounting for the instantaneous and local properties of the liquid phase in its vicinity. The distributions in space of chemical species residing in the liquid phase are computed from the coupled species balances considering the mass transfer from bubbles and reactions between the species. The model has been applied to simulate chemisorption of CO2 bubbles in NaOH solutions. Our results show that apart from hydrodynamics behavior, the model is able to predict the bubble size distribution as well as temporal and spatial variations of each chemical species involved
    • …
    corecore