1,412 research outputs found

    Demand and Storage Management in a Prosumer Nanogrid Based on Energy Forecasting

    Get PDF
    Energy efficiency and consumers' role in the energy system are among the strategic research topics in power systems these days. Smart grids (SG) and, specifically, microgrids, are key tools for these purposes. This paper presents a three-stage strategy for energy management in a prosumer nanogrid. Firstly, energy monitoring is performed and time-space compression is applied as a tool for forecasting energy resources and power quality (PQ) indices; secondly, demand is managed, taking advantage of smart appliances (SA) to reduce the electricity bill; finally, energy storage systems (ESS) are also managed to better match the forecasted generation of each prosumer. Results show how these strategies can be coordinated to contribute to energy management in the prosumer nanogrid. A simulation test is included, which proves how effectively the prosumers' power converters track the power setpoints obtained from the proposed strategy.Spanish Agencia Estatal de Investigacion ; Fondo Europeo de Desarrollo Regional

    Near Optimal Channel Assignment for Interference Mitigation in Wireless Mesh Networks

    Get PDF
    In multi-radio multi-channel (MRMC) WMNs, interference alleviation is affected through several network design techniques e.g., channel assignment (CA), link scheduling, routing etc., intelligent CA schemes being the most effective tool for interference mitigation. CA in WMNs is an NP-Hard problem, and makes optimality a desired yet elusive goal in real-time deployments which are characterized by fast transmission and switching times and minimal end-to-end latency. The trade-off between optimal performance and minimal response times is often achieved through CA schemes that employ heuristics to propose efficient solutions. WMN configuration and physical layout are also crucial factors which decide network performance, and it has been demonstrated in numerous research works that rectangular/square grid WMNs outperform random or unplanned WMN deployments in terms of network capacity, latency, and network resilience. In this work, we propose a smart heuristic approach to devise a near-optimal CA algorithm for grid WMNs (NOCAG). We demonstrate the efficacy of NOCAG by evaluating its performance against the minimal-interference CA generated through a rudimentary brute-force technique (BFCA), for the same WMN configuration. We assess its ability to mitigate interference both, theoretically (through interference estimation metrics) and experimentally (by running rigorous simulations in NS-3). We demonstrate that the performance of NOCAG is almost as good as the BFCA, at a minimal computational overhead of O(n) compared to the exponential of BFCA

    On the optimal selection and integration of batteries in dc grids through a mixed-integer quadratic convex formulation

    Get PDF
    This paper deals with the problem of the optimal selection and location of batteries in DC distribution grids by proposing a new mixed-integer convex model. The exact mixed-integer nonlin-ear model is transformed into a mixed-integer quadratic convex model (MIQC) by approximating the product among voltages in the power balance equations as a hyperplane. The most important characteristic of our proposal is that the MIQC formulations ensure the global optimum reaching via branch & bound methods and quadratic programming since each combination of the binary variables generates a node with a convex optimization subproblem. The formulation of the objective function is associated with the minimization of the energy losses for a daily operation scenario considering high renewable energy penetration. Numerical simulations show the effectiveness of the proposed MIQC model to reach the global optimum of the optimization model when compared with the exact optimization model in a 21-node test feeder. All the validations are carried out in the GAMS optimization software.Fil: Serra, Federico Martin. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias. Laboratorio de Control Automático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Montoya Giraldo, Oscar Danilo. Universidad Distrital Francisco José de Caldas; Colombia. Universidad Tecnológica de Bolívar; ColombiaFil: Alvarado Barrios, Lázaro. Universidad Loyola Andalucia; EspañaFil: Álvarez Arroyo, Cesar. Universidad de Sevilla; EspañaFil: Chamorro, Harold R.. Royal Institute of Technology; Sueci

    A Novel Direct Load Control Testbed for Smart Appliances

    Get PDF
    The effort to continuously improve and innovate smart appliances (SA) energy management requires an experimental research and development environment which integrates widely differing tools and resources seamlessly. To this end, this paper proposes a novel Direct Load Control (DLC) testbed, aiming to conveniently support the research community, as well as analyzing and comparing their designs in a laboratory environment. Based on the LabVIEW computing platform, this original testbed enables access to knowledge of major components such as online weather forecasting information, distributed energy resources (e.g., energy storage, solar photovoltaic), dynamic electricity tariff from utilities and demand response (DR) providers together with different mathematical optimization features given by General Algebraic Modelling System (GAMS). This intercommunication is possible thanks to the different applications programming interfaces (API) incorporated into the system and to intermediate agents specially developed for this case. Different basic case studies have been presented to envision the possibilities of this system in the future and more complex scenarios, to actively support the DLC strategies. These measures will offer enough flexibility to minimize the impact on user comfort combined with support for multiple DR programs. Thus, given the successful results, this platform can lead to a solution towards more efficient use of energy in the residential environment

    Optimal selection and location of bess systems in medium-voltage rural distribution networks for minimizing greenhouse gas emissions

    Get PDF
    This paper explores a methodology to locate battery energy storage systems (BESS) in rural alternating current (AC) distribution networks fed by diesel generators to minimize total greenhouse gas emissions. A mixed-integer nonlinear programming (MINLP) model is formulated to represent the problem of greenhouse gas emissions minimization, considering power balance and devices capabilities as constraints. To model the BESS systems, a linear relationship is considered between the state of charge and the power injection/consumption using a charging/discharging coefficient. The solution of the MINLP model is reached through the general algebraic modeling system by employing the BONMIN solver. Numerical results in a medium-voltage AC distribution network composed of 33 nodes and 32 branches operated with 12.66 kV demonstrate the effectiveness of including BESS systems to minimize greenhouse gas emissions in diesel generators that feeds rural distribution networks

    Decision support tool for Virtual Power Players: Hybrid Particle Swarm Optimization applied to Day-ahead Vehicle-To-Grid Scheduling

    Get PDF
    This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method
    corecore