23,909 research outputs found

    Uncertainty Estimation in One-Stage Object Detection

    Full text link
    Environment perception is the task for intelligent vehicles on which all subsequent steps rely. A key part of perception is to safely detect other road users such as vehicles, pedestrians, and cyclists. With modern deep learning techniques huge progress was made over the last years in this field. However such deep learning based object detection models cannot predict how certain they are in their predictions, potentially hampering the performance of later steps such as tracking or sensor fusion. We present a viable approaches to estimate uncertainty in an one-stage object detector, while improving the detection performance of the baseline approach. The proposed model is evaluated on a large scale automotive pedestrian dataset. Experimental results show that the uncertainty outputted by our system is coupled with detection accuracy and the occlusion level of pedestrians

    BioNessie - a grid enabled biochemical networks simulation environment

    Get PDF
    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scale simulations

    Deep Network Uncertainty Maps for Indoor Navigation

    Full text link
    Most mobile robots for indoor use rely on 2D laser scanners for localization, mapping and navigation. These sensors, however, cannot detect transparent surfaces or measure the full occupancy of complex objects such as tables. Deep Neural Networks have recently been proposed to overcome this limitation by learning to estimate object occupancy. These estimates are nevertheless subject to uncertainty, making the evaluation of their confidence an important issue for these measures to be useful for autonomous navigation and mapping. In this work we approach the problem from two sides. First we discuss uncertainty estimation in deep models, proposing a solution based on a fully convolutional neural network. The proposed architecture is not restricted by the assumption that the uncertainty follows a Gaussian model, as in the case of many popular solutions for deep model uncertainty estimation, such as Monte-Carlo Dropout. We present results showing that uncertainty over obstacle distances is actually better modeled with a Laplace distribution. Then, we propose a novel approach to build maps based on Deep Neural Network uncertainty models. In particular, we present an algorithm to build a map that includes information over obstacle distance estimates while taking into account the level of uncertainty in each estimate. We show how the constructed map can be used to increase global navigation safety by planning trajectories which avoid areas of high uncertainty, enabling higher autonomy for mobile robots in indoor settings.Comment: Accepted for publication in "2019 IEEE-RAS International Conference on Humanoid Robots (Humanoids)

    Parallelized Inference for Gravitational-Wave Astronomy

    Full text link
    Bayesian inference is the workhorse of gravitational-wave astronomy, for example, determining the mass and spins of merging black holes, revealing the neutron star equation of state, and unveiling the population properties of compact binaries. The science enabled by these inferences comes with a computational cost that can limit the questions we are able to answer. This cost is expected to grow. As detectors improve, the detection rate will go up, allowing less time to analyze each event. Improvement in low-frequency sensitivity will yield longer signals, increasing the number of computations per event. The growing number of entries in the transient catalog will drive up the cost of population studies. While Bayesian inference calculations are not entirely parallelizable, key components are embarrassingly parallel: calculating the gravitational waveform and evaluating the likelihood function. Graphical processor units (GPUs) are adept at such parallel calculations. We report on progress porting gravitational-wave inference calculations to GPUs. Using a single code - which takes advantage of GPU architecture if it is available - we compare computation times using modern GPUs (NVIDIA P100) and CPUs (Intel Gold 6140). We demonstrate speed-ups of 50×\sim 50 \times for compact binary coalescence gravitational waveform generation and likelihood evaluation and more than 100×100\times for population inference within the lifetime of current detectors. Further improvement is likely with continued development. Our python-based code is publicly available and can be used without familiarity with the parallel computing platform, CUDA.Comment: 5 pages, 4 figures, submitted to PRD, code can be found at https://github.com/ColmTalbot/gwpopulation https://github.com/ColmTalbot/GPUCBC https://github.com/ADACS-Australia/ADACS-SS18A-RSmith Add demonstration of improvement in BNS spi

    SHADHO: Massively Scalable Hardware-Aware Distributed Hyperparameter Optimization

    Full text link
    Computer vision is experiencing an AI renaissance, in which machine learning models are expediting important breakthroughs in academic research and commercial applications. Effectively training these models, however, is not trivial due in part to hyperparameters: user-configured values that control a model's ability to learn from data. Existing hyperparameter optimization methods are highly parallel but make no effort to balance the search across heterogeneous hardware or to prioritize searching high-impact spaces. In this paper, we introduce a framework for massively Scalable Hardware-Aware Distributed Hyperparameter Optimization (SHADHO). Our framework calculates the relative complexity of each search space and monitors performance on the learning task over all trials. These metrics are then used as heuristics to assign hyperparameters to distributed workers based on their hardware. We first demonstrate that our framework achieves double the throughput of a standard distributed hyperparameter optimization framework by optimizing SVM for MNIST using 150 distributed workers. We then conduct model search with SHADHO over the course of one week using 74 GPUs across two compute clusters to optimize U-Net for a cell segmentation task, discovering 515 models that achieve a lower validation loss than standard U-Net.Comment: 10 pages, 6 figure
    corecore