147,026 research outputs found

    Mathematical Modelling of Chemical Diffusion through Skin using Grid-based PSEs

    Get PDF
    A Problem Solving Environment (PSE) with connections to remote distributed Grid processes is developed. The Grid simulation is itself a parallel process and allows steering of individual or multiple runs of the core computation of chemical diffusion through the stratum corneum, the outer layer of the skin. The effectiveness of this Grid-based approach in improving the quality of the simulation is assessed

    Implementation of Grid-computing Framework for Simulation in Multi-scale Structural Analysis

    Get PDF
    A new grid-computing framework for simulation in multi-scale structural analysis is presented. Two levels of parallel processing will be involved in this framework: multiple local distributed computing environments connected by local network to form a grid-based cluster-to-cluster distributed computing environment. To successfully perform the simulation, a large-scale structural system task is decomposed into the simulations of a simplified global model and several detailed component models using various scales. These correlated multi-scale structural system tasks are distributed among clusters and connected together in a multi-level hierarchy and then coordinated over the internet. The software framework for supporting the multi-scale structural simulation approach is also presented. The program architecture design allows the integration of several multi-scale models as clients and servers under a single platform. To check its feasibility, a prototype software system has been designed and implemented to perform the proposed concept. The simulation results show that the software framework can increase the speedup performance of the structural analysis. Based on this result, the proposed grid-computing framework is suitable to perform the simulation of the multi-scale structural analysis

    STRUCTURAL SYSTEM SIMULATION USING GRID-COMPUTING FRAMEWORK

    Get PDF
    A multi-level modeling and simulation method of structural system using grid-computing framework is proposed in this paper. Two levels of parallel processing will be involved in this framework: (1) multiple locally distributed computing environments connected by the local network to form (2) a grid-based cluster-to-cluster distributed computing environment. To successfully perform the simulations, a large-scale structural system is decomposed into the simulations of a simplified global model and several detailed component models with various scales. These correlated multi-scale simulation tasks are distributed amongst clusters and connected together in a multi-level modeling and simulation method and then coordinated over the internet. This paper also presents the development of a grid-computing software framework that can support the proposed simulation approach. The architectural design of the program also allows the integration of several multi-scale models to be clients and servers under a single platform. Additionally, the comparison result between proposed method and assumed exact solution show that the proposed simulation method is appropriate to simulate the response of the structural systems

    Current Controller Based Power Management Strategy for Interfacing DG Units to Micro Grid

    Get PDF
    This paper proposes a power management strategy of parallel inveters based system, to enhance the power generation capacity of the existing system with distributed energy sources one has to choose DG source based inverter connected in parallel with the existing system.Two DG sources PV, Fuel cells feeds the DC voltage to two parallel inverters connected to the grid. Fixed band hysteresis current control with Instantaneous p-q power theory is adopted to create an artificial environment. Two parallel inverters are able to deliver the harvested power from PV, FC to grid and able to balance the load Without communication between parallel inverters this controller having the capability of load following, the harmonic components of currents at output of inverter are also very low; this will automatically reduces the circulating currents between parallel inverters. Simulation studies are carried out to investigate the results of PV, FC systems connected to the utility grid

    GridSim: A Toolkit for the Modeling and Simulation of Distributed Resource Management and Scheduling for Grid Computing

    Full text link
    Clusters, grids, and peer-to-peer (P2P) networks have emerged as popular paradigms for next generation parallel and distributed computing. The management of resources and scheduling of applications in such large-scale distributed systems is a complex undertaking. In order to prove the effectiveness of resource brokers and associated scheduling algorithms, their performance needs to be evaluated under different scenarios such as varying number of resources and users with different requirements. In a grid environment, it is hard and even impossible to perform scheduler performance evaluation in a repeatable and controllable manner as resources and users are distributed across multiple organizations with their own policies. To overcome this limitation, we have developed a Java-based discrete-event grid simulation toolkit called GridSim. The toolkit supports modeling and simulation of heterogeneous grid resources (both time- and space-shared), users and application models. It provides primitives for creation of application tasks, mapping of tasks to resources, and their management. To demonstrate suitability of the GridSim toolkit, we have simulated a Nimrod-G like grid resource broker and evaluated the performance of deadline and budget constrained cost- and time-minimization scheduling algorithms

    Commercial-off-the-shelf simulation package interoperability: Issues and futures

    Get PDF
    Commercial-Off-The-Shelf Simulation Packages (CSPs) are widely used in industry to simulate discrete-event models. Interoperability of CSPs requires the use of distributed simulation techniques. Literature presents us with many examples of achieving CSP interoperability using bespoke solutions. However, for the wider adoption of CSP-based distributed simulation it is essential that, first and foremost, a standard for CSP interoperability be created, and secondly, these standards are adhered to by the CSP vendors. This advanced tutorial is on an emerging standard relating to CSP interoperability. It gives an overview of this standard and presents case studies that implement some of the proposed standards. Furthermore, interoperability is discussed in relation to large and complex models developed using CSPs that require large amount of computing resources. It is hoped that this tutorial will inform the simulation community of the issues associated with CSP interoperability, the importance of these standards and its future

    Supporting simulation in industry through the application of grid computing

    Get PDF
    An increased need for collaborative research, together with continuing advances in communication technology and computer hardware, has facilitated the development of distributed systems that can provide users access to geographically dispersed computing resources that are administered in multiple computer domains. The term grid computing, or grids, is popularly used to refer to such distributed systems. Simulation is characterized by the need to run multiple sets of computationally intensive experiments. Large scale scientific simulations have traditionally been the primary benefactor of grid computing. The application of this technology to simulation in industry has, however, been negligible. This research investigates how grid technology can be effectively exploited by users to model simulations in industry. It introduces our desktop grid, WinGrid, and presents a case study conducted at a leading European investment bank. Results indicate that grid computing does indeed hold promise for simulation in industry
    • …
    corecore