16,870 research outputs found

    Time for Cloud? Design and implementation of a time-based cloud resource management system

    Get PDF
    The current pay-per-use model adopted by public cloud service providers has influenced the perception on how a cloud should provide its resources to end-users, i.e. on-demand and access to an unlimited amount of resources. However, not all clouds are equal. While such provisioning models work for well-endowed public clouds, they may not always work well in private clouds with limited budget and resources such as research and education clouds. Private clouds also stand to be impacted greatly by issues such as user resource hogging and the misuse of resources for nefarious activities. These problems are usually caused by challenges such as (1) limited physical servers/ budget, (2) growing number of users and (3) the inability to gracefully and automatically relinquish resources from inactive users. Currently, cloud resource management frameworks used for private cloud setups, such as OpenStack and CloudStack, only uses the pay-per-use model as the basis when provisioning resources to users. In this paper, we propose OpenStack Café, a novel methodology adopting the concepts of 'time' and booking systems' to manage resources of private clouds. By allowing users to book resources over specific time-slots, our proposed solution can efficiently and automatically help administrators manage users' access to resource, addressing the issue of resource hogging and gracefully relinquish resources back to the pool in resource-constrained private cloud setups. Work is currently in progress to adopt Café into OpenStack as a feature, and results of our prototype show promises. We also present some insights to lessons learnt during the design and implementation of our proposed methodology in this paper

    Inhomogeneous Neutrino Degeneracy and Big Bang Nucleosynthesis

    Get PDF
    We examine Big Bang nucleosynthesis (BBN) in the case of inhomogenous neutrino degeneracy, in the limit where the fluctuations are sufficiently small on large length scales that the present-day element abundances are homogeneous. We consider two representive cases: degeneracy of the electron neutrino alone, and equal chemical potentials for all three neutrinos. We use a linear programming method to constrain an arbitrary distribution of the chemical potentials. For the current set of (highly-restrictive) limits on the primordial element abundances, homogeneous neutrino degeneracy barely changes the allowed range of the baryon-to-photon ratio. Inhomogeneous degeneracy allows for little change in the lower bound on the baryon-to-photon ratio, but the upper bound in this case can be as large as 1.1 \times 10^{-8} (only electron neutrino degeneracy) or 1.0 \times 10^{-9} (equal degeneracies for all three neutrinos). For the case of inhomogeneous neutrino degeneracy, we show that there is no BBN upper bound on the neutrino energy density, which is bounded in this case only by limits from structure formation and the cosmic microwave background.Comment: 6 pages, no figure

    Inhomogeneous Big-Bang Nucleosynthesis in Light of Recent Observations

    Get PDF
    We consider inhomogeneous big bang nucleosynthesis in light of the present observational situation. Different observations of He-4 and D disagree with each other, and depending on which set of observations one uses, the estimated primordial He-4 corresponds to a lower baryon density in standard big bang nucleosynthesis than what one gets from deuterium. Recent Kamiokande results rule out a favorite particle physics solution to this tension between He-4 and D. Inhomogeneous nucleosynthesis can alleviate this tension, but the more likely solution is systematics in the observations. The upper limit to Omega_b from inhomogeneous nucleosynthesis is higher than in standard nucleosynthesis, given that the distance scale of the inhomogeneity is near the optimal value, which maximizes effects of neutron diffusion. Possible sources of baryon inhomogeneity include the QCD and electroweak phase transitions. The distance scale of the inhomogeneities arising from the electroweak transition is too small for them to have a large effect on nucleosynthesis, but the effect may still be larger than some of the other small corrections recently incorporated to SBBN codes.Comment: 12 pages, 8 figures, REVTe

    Skyrmions around Kerr black holes and spinning BHs with Skyrme hair

    Full text link
    We study solutions of the Einstein-Skyrme model. Firstly we consider test field Skyrmions on the Kerr background. These configurations -- hereafter dubbed Skerrmions -- can be in equilibrium with a Kerr black hole (BH) by virtue of a synchronisation condition. We consider two sectors for Skerrmions. In the sector with non-zero baryon charge, Skerrmions are akin to the known Skyrme solutions on the Schwarzschild background. These `topological' configurations reduce to flat spacetime Skyrmions in a vanishing BH mass limit; moreoever, they never become "small" perturbations on the Kerr background: the non-linearities of the Skyrme model are crucial for all such Skerrmions. In the non-topological sector, on the other hand, Skerrmions have no analogue on the Schwarzschild background. Non-topological Skerrmions carry not baryon charge and bifurcate from a subset of Kerr solutions defining an existence line. Therein the appropriate truncation of the Skyrme model yield a linear scalar field theory containing a complex plus a real field, both massive and decoupled, and the Skerrmions reduce to the known stationary scalar clouds around Kerr BHs. Moreover, non-topological Skerrmions trivialise in the vanishing BH mass limit. We then discuss the backreaction of these Skerrmions, that yield rotating BHs with synchronised Skyrme hair, which continously connect to the Kerr solution (self-gravitating Skyrmions) in the non-topological (topological) sector. In particular, the non-topological hairy BHs provide a non-linear realisation, within the Skyrme model, of the synchronous stationary scalar clouds around Kerr.Comment: 23 pages, 7 figures; to appear in JHE

    Where clouds are made...

    Full text link
    Where clouds are made... explored Didcot A Power station in the last few months of its active life as it approached it’s closure in 2013. This was a commissioned project, jointly funded by Npower and South Oxfordshire Council. Through the project and exhibition we explored different types of physical and social relationships that people had with the power station over it’s working life. For our exhibition at Cornerstone Arts Centre, Didcot, we made a wooden scaffolding structure referencing part of the pre-fab construction process. It was made to the same scale as one of the cooling towers, but represented a fragment of the whole. The almost imperceptible arc across the gallery floor drew attention to the enormity of the whole and the difficulty of comprehending the scale. Seen through the construction, we made a series of laser-cut wall drawings playing with the 70’s language of dials and switches within the control room
    • 

    corecore