30,948 research outputs found

    Towards a Real-Time Data Driven Wildland Fire Model

    Full text link
    A wildland fire model based on semi-empirical relations for the spread rate of a surface fire and post-frontal heat release is coupled with the Weather Research and Forecasting atmospheric model (WRF). The propagation of the fire front is implemented by a level set method. Data is assimilated by a morphing ensemble Kalman filter, which provides amplitude as well as position corrections. Thermal images of a fire will provide the observations and will be compared to a synthetic image from the model state.Comment: 5 pages, 4 figure

    Data mining and fusion

    No full text

    A feasibility study: Forest Fire Advanced System Technology (FFAST)

    Get PDF
    The National Aeronautics and Space Administration/Jet Propulsion Laboratory and the United States Department of Agriculture Forest Service completed a feasibility study that examined the potential uses of advanced technology in forest fires mapping and detection. The current and future (1990's) information needs in forest fire management were determined through interviews. Analysis shows that integrated information gathering and processing is needed. The emerging technologies that were surveyed and identified as possible candidates for use in an end to end system include ""push broom'' sensor arrays, automatic georeferencing, satellite communication links, near real or real time image processing, and data integration. Matching the user requirements and the technologies yielded a ""strawman'' system configuration. The feasibility study recommends and outlines the implementation of the next phase for this project, a two year, conceptual design phase to define a system that warrants continued development

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Geobase Information System Impacts on Space Image Formats

    Get PDF
    As Geobase Information Systems increase in number, size and complexity, the format compatability of satellite remote sensing data becomes increasingly more important. Because of the vast and continually increasing quantity of data available from remote sensing systems the utility of these data is increasingly dependent on the degree to which their formats facilitate, or hinder, their incorporation into Geobase Information Systems. To merge satellite data into a geobase system requires that they both have a compatible geographic referencing system. Greater acceptance of satellite data by the user community will be facilitated if the data are in a form which most readily corresponds to existing geobase data structures. The conference addressed a number of specific topics and made recommendations

    Evaluation of a Bayesian Algorithm to Detect Burned Areas in the Canary Islands’ Dry Woodlands and Forests Ecoregion Using MODIS Data

    Get PDF
    Burned Area (BA) is deemed as a primary variable to understand the Earth’s climate system. Satellite remote sensing data have allowed for the development of various burned area detection algorithms that have been globally applied to and assessed in diverse ecosystems, ranging from tropical to boreal. In this paper, we present a Bayesian algorithm (BY-MODIS) that detects burned areas in a time series of Moderate Resolution Imaging Spectroradiometer (MODIS) images from 2002 to 2012 of the Canary Islands’ dry woodlands and forests ecoregion (Spain). Based on daily image products MODIS, MOD09GQ (250 m), and MOD11A1 (1 km), the surface spectral reflectance and the land surface temperature, respectively, 10 day composites were built using the maximum temperature criterion. Variables used in BY-MODIS were the Global Environment Monitoring Index (GEMI) and Burn Boreal Forest Index (BBFI), alongside the NIR spectral band, all of which refer to the previous year and the year the fire took place in. Reference polygons for the 14 fires exceeding 100 hectares and identified within the period under analysis were developed using both post-fire LANDSAT images and official information from the forest fires national database by the Ministry of Agriculture and Fisheries, Food and Environment of Spain (MAPAMA). The results obtained by BY-MODIS can be compared to those by official burned area products, MCD45A1 and MCD64A1. Despite that the best overall results correspond to MCD64A1, BY-MODIS proved to be an alternative for burned area mapping in the Canary Islands, a region with a great topographic complexity and diverse types of ecosystems. The total burned area detected by the BY-MODIS classifier was 64.9% of the MAPAMA reference data, and 78.6% according to data obtained from the LANDSAT images, with the lowest average commission error (11%) out of the three products and a correlation (R2) of 0.82. The Bayesian algorithm—originally developed to detect burned areas in North American boreal forests using AVHRR archival data Long-Term Data Record—can be successfully applied to a lower latitude forest ecosystem totally different from the boreal ecosystem and using daily time series of satellite images from MODIS with a 250 m spatial resolution, as long as a set of training areas adequately characterising the dynamics of the forest canopy affected by the fire is defined

    Application of remote sensing to selected problems within the state of California

    Get PDF
    Specific case studies undertaken to demonstrate the usefulness of remote sensing technology to resource managers in California are highlighted. Applications discussed include the mapping and quantization of wildland fire fuels in Mendocino and Shasta Counties as well as in the Central Valley; the development of a digital spectral/terrain data set for Colusa County; the Forsythe Planning Experiment to maximize the usefulness of inputs from LANDSAT and geographic information systems to county planning in Mendocino County; the development of a digital data bank for Big Basin State Park in Santa Cruz County; the detection of salinity related cotton canopy reflectance differences in the Central Valley; and the surveying of avocado acreage and that of other fruits and nut crops in Southern California. Special studies include the interpretability of high altitude, large format photography of forested areas for coordinated resource planning using U-2 photographs of the NASA Bucks Lake Forestry test site in the Plumas National Forest in the Sierra Nevada Mountains
    • …
    corecore