344 research outputs found

    Adaptive Multi-Rate Wavelet Method for Circuit Simulation

    Get PDF
    In this paper a new adaptive algorithm for multi-rate circuit simulation encountered in the design of RF circuits based on spline wavelets is presented. The ordinary circuit differential equations are first rewritten by a system of (multi-rate) partial differential equations (MPDEs) in order to decouple the different time scales. Second, a semi-discretization by Rothe's method of the MPDEs results in a system of differential algebraic equations DAEs with periodic boundary conditions. These boundary value problems are solved by a Galerkin discretization using spline functions. An adaptive spline grid is generated, using spline wavelets for non-uniform grids. Moreover the instantaneous frequency is chosen adaptively to guarantee a smooth envelope resulting in large time steps and therefore high run time efficiency. Numerical tests on circuits exhibiting multi-rate behavior including mixers and PLL conclude the paper

    A Functionally-Fitted Block Numerov Method for Solving Second-Order Initial-Value Problems with Oscillatory Solutions

    Get PDF
    [EN] A functionally-fitted Numerov-type method is developed for the numerical solution of second-order initial-value problems with oscillatory solutions. The basis functions are considered among trigonometric and hyperbolic ones. The characteristics of the method are studied, particularly, it is shown that it has a third order of convergence for the general second-order ordinary differential equation, y′′=f(x,y,y′), it is a fourth order convergent method for the special second-order ordinary differential equation, y′′=f(x,y). Comparison with other methods in the literature, even of higher order, shows the good performance of the proposed method.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    A Survey on Reservoir Computing and its Interdisciplinary Applications Beyond Traditional Machine Learning

    Full text link
    Reservoir computing (RC), first applied to temporal signal processing, is a recurrent neural network in which neurons are randomly connected. Once initialized, the connection strengths remain unchanged. Such a simple structure turns RC into a non-linear dynamical system that maps low-dimensional inputs into a high-dimensional space. The model's rich dynamics, linear separability, and memory capacity then enable a simple linear readout to generate adequate responses for various applications. RC spans areas far beyond machine learning, since it has been shown that the complex dynamics can be realized in various physical hardware implementations and biological devices. This yields greater flexibility and shorter computation time. Moreover, the neuronal responses triggered by the model's dynamics shed light on understanding brain mechanisms that also exploit similar dynamical processes. While the literature on RC is vast and fragmented, here we conduct a unified review of RC's recent developments from machine learning to physics, biology, and neuroscience. We first review the early RC models, and then survey the state-of-the-art models and their applications. We further introduce studies on modeling the brain's mechanisms by RC. Finally, we offer new perspectives on RC development, including reservoir design, coding frameworks unification, physical RC implementations, and interaction between RC, cognitive neuroscience and evolution.Comment: 51 pages, 19 figures, IEEE Acces
    corecore