293 research outputs found

    UAVs and Machine Learning Revolutionising Invasive Grass and Vegetation Surveys in Remote Arid Lands

    Get PDF
    This is the final version of the article. Available from MDPI via the DOI in this record.The monitoring of invasive grasses and vegetation in remote areas is challenging, costly, and on the ground sometimes dangerous. Satellite and manned aircraft surveys can assist but their use may be limited due to the ground sampling resolution or cloud cover. Straightforward and accurate surveillance methods are needed to quantify rates of grass invasion, offer appropriate vegetation tracking reports, and apply optimal control methods. This paper presents a pipeline process to detect and generate a pixel-wise segmentation of invasive grasses, using buffel grass (Cenchrus ciliaris) and spinifex (Triodia sp.) as examples. The process integrates unmanned aerial vehicles (UAVs) also commonly known as drones, high-resolution red, green, blue colour model (RGB) cameras, and a data processing approach based on machine learning algorithms. The methods are illustrated with data acquired in Cape Range National Park, Western Australia (WA), Australia, orthorectified in Agisoft Photoscan Pro, and processed in Python programming language, scikit-learn, and eXtreme Gradient Boosting (XGBoost) libraries. In total, 342,626 samples were extracted from the obtained data set and labelled into six classes. Segmentation results provided an individual detection rate of 97% for buffel grass and 96% for spinifex, with a global multiclass pixel-wise detection rate of 97%. Obtained results were robust against illumination changes, object rotation, occlusion, background cluttering, and floral density variation.This work was funded by the Plant Biosecurity Cooperative Research Centre (PBCRC) 2164 project, the Agriculture Victoria Research and the Queensland University of Technology (QUT). The authors would like to acknowledge Derek Sandow andWA Parks andWildlife Service for the logistic support and permits to access the survey areas at Cape Range National Park. The authors would also like to acknowledge Eduard Puig-Garcia for his contributions in co-planning the experimentation phase. The authors gratefully acknowledge the support of the QUT Research Engineering Facility (REF) Operations Team (Dirk Lessner, Dean Gilligan, Gavin Broadbent and Dmitry Bratanov), who operated the DJI S800 EVO UAV and image sensors, and performed ground referencing. We thank Gavin Broadbent for the design, manufacturing, and tuning of a two-axis gimbal for the camera. We also acknowledge the High-Performance Computing and Research Support Group at QUT, for the computational resources and services used in this work

    Open access data in polar and cryospheric remote sensing

    Get PDF
    This paper aims to introduce the main types and sources of remotely sensed data that are freely available and have cryospheric applications. We describe aerial and satellite photography, satellite-borne visible, near-infrared and thermal infrared sensors, synthetic aperture radar, passive microwave imagers and active microwave scatterometers. We consider the availability and practical utility of archival data, dating back in some cases to the 1920s for aerial photography and the 1960s for satellite imagery, the data that are being collected today and the prospects for future data collection; in all cases, with a focus on data that are openly accessible. Derived data products are increasingly available, and we give examples of such products of particular value in polar and cryospheric research. We also discuss the availability and applicability of free and, where possible, open-source software tools for reading and processing remotely sensed data. The paper concludes with a discussion of open data access within polar and cryospheric sciences, considering trends in data discoverability, access, sharing and use.A. Pope would like to acknowledge support from the Earth Observation Technology Cluster, a knowledge exchange project, funded by the Natural Environment Research Council (NERC) under its Technology Clusters Programme, the U.S. National Science Foundation Graduate Research Fellowship Program, Trinity College (Cambridge) and the Dartmouth Visiting Young Scientist program sponsored by the NASA New Hampshire Space Grant.This is the final published version. It's also available from MDPI at http://www.mdpi.com/2072-4292/6/7/6183

    SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches

    Get PDF
    The SiDroForest (Siberian drone-mapped forest inventory) data collection is an attempt to remedy the scarcity of forest structure data in the circumboreal region by providing adjusted and labeled tree-level and vegetation plot-level data for machine learning and upscaling purposes. We present datasets of vegetation composition and tree and plot level forest structure for two important vegetation transition zones in Siberia, Russia; the summergreen–evergreen transition zone in Central Yakutia and the tundra–taiga transition zone in Chukotka (NE Siberia). The SiDroForest data collection consists of four datasets that contain different complementary data types that together support in-depth analyses from different perspectives of Siberian Forest plot data for multi-purpose applications. i. Dataset 1 provides unmanned aerial vehicle (UAV)-borne data products covering the vegetation plots surveyed during fieldwork (Kruse et al., 2021, https://doi.org/10.1594/PANGAEA.933263). The dataset includes structure-from-motion (SfM) point clouds and red–green–blue (RGB) and red–green–near-infrared (RGN) orthomosaics. From the orthomosaics, point-cloud products were created such as the digital elevation model (DEM), canopy height model (CHM), digital surface model (DSM) and the digital terrain model (DTM). The point-cloud products provide information on the three-dimensional (3D) structure of the forest at each plot.ii. Dataset 2 contains spatial data in the form of point and polygon shapefiles of 872 individually labeled trees and shrubs that were recorded during fieldwork at the same vegetation plots (van Geffen et al., 2021c, https://doi.org/10.1594/PANGAEA.932821). The dataset contains information on tree height, crown diameter, and species type. These tree and shrub individually labeled point and polygon shapefiles were generated on top of the RGB UVA orthoimages. The individual tree information collected during the expedition such as tree height, crown diameter, and vitality are provided in table format. This dataset can be used to link individual information on trees to the location of the specific tree in the SfM point clouds, providing for example, opportunity to validate the extracted tree height from the first dataset. The dataset provides unique insights into the current state of individual trees and shrubs and allows for monitoring the effects of climate change on these individuals in the future.iii. Dataset 3 contains a synthesis of 10 000 generated images and masks that have the tree crowns of two species of larch (Larix gmelinii and Larix cajanderi) automatically extracted from the RGB UAV images in the common objects in context (COCO) format (van Geffen et al., 2021a, https://doi.org/10.1594/PANGAEA.932795). As machine-learning algorithms need a large dataset to train on, the synthetic dataset was specifically created to be used for machine-learning algorithms to detect Siberian larch species.iv. Dataset 4 contains Sentinel-2 (S-2) Level-2 bottom-of-atmosphere processed labeled image patches with seasonal information and annotated vegetation categories covering the vegetation plots (van Geffen et al., 2021b, https://doi.org/10.1594/PANGAEA.933268). The dataset is created with the aim of providing a small ready-to-use validation and training dataset to be used in various vegetation-related machine-learning tasks. It enhances the data collection as it allows classification of a larger area with the provided vegetation classes. The SiDroForest data collection serves a variety of user communities. The detailed vegetation cover and structure information in the first two datasets are of use for ecological applications, on one hand for summergreen and evergreen needle-leaf forests and also for tundra–taiga ecotones. Datasets 1 and 2 further support the generation and validation of land cover remote-sensing products in radar and optical remote sensing. In addition to providing information on forest structure and vegetation composition of the vegetation plots, the third and fourth datasets are prepared as training and validation data for machine-learning purposes. For example, the synthetic tree-crown dataset is generated from the raw UAV images and optimized to be used in neural networks. Furthermore, the fourth SiDroForest dataset contains S-2 labeled image patches processed to a high standard that provide training data on vegetation class categories for machine-learning classification with JavaScript Object Notation (JSON) labels provided. The SiDroForest data collection adds unique insights into remote hard-to-reach circumboreal forest regions.</p

    Identifying Geographical Interdependency in Critical Infrastructure Systems Using Open Source Geospatial Data in Order to Model Restoration Strategies in the Aftermath of a Large-Scale Disaster

    Get PDF
    In the wake of a large-scale disaster, strategies for emergency search and rescue, short-term recovery and medium- to long-term restoration are needed. While considerable effort is geared to developing strategies for the former two options, little comprehensive guidance exists on the latter. However, medium- to long-term restoration has a significant effect on local, regional and national economies and is essential to community vitality. In part, the deficit of robust strategies can be linked to the complexity in the data acquisition and limited methodologies to understand the interconnectedness of the relevant systems elements. This research utilizes infrastructure data for Supply Chain Interdependent Critical Infrastructure Systems (SCICI) such as transportation, energy, communications, or water, obtained or derived through open sources (such as The National Map of the U.S. Geological Survey) to identify, understand, and map the interdependencies between these system elements to enable restoration planning. Specifically, internal geographical relationships (herein called the ‘geographical interdependency’) of SCICI elements are mapped. These interdependencies highlight the stress points on the larger SCICI where failures occur and are not included in current built environment models. The mapping of these interdependencies is a key step forward in attempts to optimally restore an urban center’s supply chain in the wake of an extreme event

    A Synergistic Approach for Recovering Occlusion-Free Textured 3D Maps of Urban Facades from Heterogeneous Cartographic Data

    Get PDF
    In this paper we present a practical approach for generating an occlusion-free textured 3D map of urban facades by the synergistic use of terrestrial images, 3D point clouds and area-based information. Particularly in dense urban environments, the high presence of urban objects in front of the facades causes significant difficulties for several stages in computational building modeling. Major challenges lie on the one hand in extracting complete 3D facade quadrilateral delimitations and on the other hand in generating occlusion-free facade textures. For these reasons, we describe a straightforward approach for completing and recovering facade geometry and textures by exploiting the data complementarity of terrestrial multi-source imagery and area-based information

    Long time series (1984–2020) of albedo variations on the Greenland ice sheet from harmonized Landsat and Sentinel 2 imagery

    Get PDF
    Albedo is a key factor in modulating the absorption of solar radiation on ice surfaces. Satellite measurements have shown a general reduction in albedo across the Greenland ice sheet over the past few decades, particularly along the western margin of the ice sheet, a region known as the Dark Zone (albedo < 0.45). Here we chose a combination of Landsat 4–8 and Sentinel 2 imagery to enable us to derive the longest record of albedo variations in the Dark Zone, running from 1984 to 2020. We developed a simple, pragmatic and efficient sensor transformation to provide a long time series of consistent, harmonized satellite imagery. Narrow to broadband conversion algorithms were developed from regression models of harmonized satellite data and in situ albedo from the Program for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather stations. The albedo derived from the harmonized Landsat and Sentinel 2 data shows that the maximum extent of the Dark Zone expanded rapidly between 2005 and 2007, increasing to ~280% of the average annual maximum extent of 2900 km2 to ~8000 km2 since. The Dark Zone is continuing to darken slowly, with the average annual minimum albedo decreasing at a rate of (p = 0.16, 2001–2020)

    Historical GIS as a Tool for Monitoring, Preserving and Planning Forest Landscape: A Case Study in a Mediterranean Region

    Get PDF
    In order to assess the dynamics of forests and the effectiveness of their management strategies, it is necessary to develop monitoring systems based on qualitative and quantitative tools for their conservation, valorization and restoration. This approach is particularly important for areas that have undergone intense anthropogenic transformations in the last century. In order to do this, it is first necessary to apply a chronological methodology based on historical GIS that allows the integration of different types of geodata. As a result of constantly evolving spatial analysis tools, the monitoring of landscape forest evolution is increasingly more effective and complete. Using as a case study a region representative of common processes of other Mediterranean areas (Southern Italy–Basilicata region), a diachronic analysis of 156 years was applied to evaluate the forest landscape dynamics. Starting from historical cartographies to remotely sensed data available online, a GIS-based approach was implemented to evaluate the spatial and statistical variations of the forest landscape. In this way, it was possible to assess how much, where and how the forest landscape has changed in order to provide a methodology to support more detailed and sectoral studies

    Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery

    Get PDF
    Systematically monitoring Greenland's outlet glaciers is central to understanding the timescales over which their flow and sea level contributions evolve. In this study we use data from the new Sentinel-1a/b satellite constellation to generate 187 velocity maps, covering four key outlet glaciers in Greenland: Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm. These data provide a new high temporal resolution record (6-day averaged solutions) of each glacier's evolution since 2014, and resolve recent seasonal speedup periods and inter-annual changes in Greenland outlet glacier speed with an estimated certainty of 10 %. We find that since 2012, Jakobshavn Isbræ has been decelerating, and now flows approximately 1250 m yr−1 (10 %), slower than 5 years previously, thus reversing an increasing trend in ice velocity that has persisted during the last decade. Despite this, we show that seasonal variability in ice velocity remains significant: up to 750 m yr−1 (14 %) at a distance of 12 km inland of the terminus. We also use our new dataset to estimate the duration of speedup periods (80–95 days) and to demonstrate a strong relationship between ice front position and ice flow at Jakobshavn Isbræ, with increases in speed of  ∼  1800 m yr−1 in response to 1 km of retreat. Elsewhere, we record significant seasonal changes in flow of up to 25 % (2015) and 18 % (2016) at Petermann Glacier and Zachariæ Isstrøm, respectively. This study provides a first demonstration of the capacity of a new era of operational radar satellites to provide frequent and timely monitoring of ice sheet flow, and to better resolve the timescales over which glacier dynamics evolve
    • …
    corecore