15,541 research outputs found

    Peer-to-Peer energy trading, independence aspirations and financial benefits among Nigerian households

    Get PDF
    This paper demonstrates how preferences for energy trading are influenced by autarky aspirations and possible financial benefits from energy trading in the form of lower energy expenses and additional income. It presents findings from a survey on preferences for energy trading on a community-based platform within a residential estate setting. The survey included a choice experiment of hypothetical home choices with the possibility of energy trading on a peer-to-peer (P2P) energy trading platform. It also distinguished between preferences for buying and selling. Participants were 649 residents of housing estates in Ibadan, a Nigerian city. According to our logistic regression analysis, willingness to participate in energy trading was influenced by autarky aspirations and financial benefits. The financial benefits that interest respondents include gaining additional income from P2P energy trading and reducing overall power expenses. The autarky benefit that drives interest in P2P is “reduced reliance” on the grid for electricity. Real estate developers could therefore capitalise on consumers' high levels of interest in the benefits of homes with P2P energy trading capabilities. Nigerian energy policymakers should put in place structures that support P2P because P2P energy trading can unlock the additional value of solar PV for residential consumers

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Federating smart cluster energy grids for peer-to-peer energy sharing and trading

    Get PDF
    With the rapid growth in clean distributed energy resources involving micro-generation and flexible loads, users can actively manage their own energy and have the capability to enter in a market of energy services as prosumers while reducing their carbon footprint. The coordination between these distributed energy resources is essential in order to ensure fair trading and equality in resource sharing among a community of prosumers. Peer-to-Peer (P2P) networks can provide the underlying mechanisms for supporting such coordination and offer incentives to prosumers to participate in the energy market. In particular, the federation of energy clusters with P2P networks has the potential to unlock access to energy resources and lead to the development of new energy services in a fast-growing sharing energy economy. In this paper, we present the formation and federation of smart energy clusters using P2P networks with a view to decentralise energy markets and enable access and use of clean energy resources. We implement a P2P framework to support the federation of energy clusters and study the interaction of consumers and producers in a market of energy resources and services. We demonstrate how energy exchanges and energy costs in a federation are influenced by the energy demand, the size of energy clusters and energy types. We conduct our modelling and analysis based on a real fish industry case study in Milford Haven, South Wales, as part of the EU H2020 INTERREG piSCES project

    Social Factors in P2P Energy Trading Using Hedonic Games

    Full text link
    Lately, the energy communities have gained a lot of attention as they have the potential to significantly contribute to the resilience and flexibility of the energy system, facilitating widespread integration of intermittent renewable energy sources. Within these communities the prosumers can engage in peer-to-peer trading, fostering local collaborations and increasing awareness about energy usage and flexible consumption. However, even under these favorable conditions, prosumer engagement levels remain low, requiring trading mechanisms that are aligned with their social values and expectations. In this paper, we introduce an innovative hedonic game coordination and cooperation model for P2P energy trading among prosumers which considers the social relationships within an energy community to create energy coalitions and facilitate energy transactions among them. We defined a heuristic that optimizes the prosumers coalitions, considering their social and energy price preferences and balancing the energy demand and supply within the community. We integrated the proposed hedonic game model into a state-of-the-art blockchain-based P2P energy flexibility market and evaluated its performance within an energy community of prosumers. The evaluation results on a blockchain-based P2P energy flexibility market show the effectiveness in considering social factors when creating coalitions, increasing the total amount of energy transacted in a market session by 5% compared with other game theory-based solutions. Finally, it shows the importance of the social dimensions of P2P energy transactions, the positive social dynamics in the energy community increasing the amount of energy transacted by more than 10% while contributing to a more balanced energy demand and supply within the community.Comment: to be submitted to journa
    • …
    corecore