3,110 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    A Crosslayer Routing Protocol (XLRP) for Wireless Sensor Networks

    Get PDF
    The advent of wireless sensor networks with emphasis on the information being routed, rather than routing information has redefined networking from that of conventional wireless networked systems. Demanding that need for contnt based routing techniques and development of low cost network modules, built to operate in large numbers in a networked fashion with limited resources and capabilities. The unique characteristics of wireless sensor networks have the applicability and effectiveness of conventional algorithms defined for wireless ad-hoc networks, leading to the design and development of protocols specific to wireless sensor network. Many network layer protocols have been proposed for wireless sensor networks, identifying and addressing factors influencing network layer design, this thesis defines a cross layer routing protocol (XLRP) for sensor networks. The submitted work is suggestive of a network layer design with knowledge of application layer information and efficient utilization of physical layer capabilities onboard the sensor modules. Network layer decisions are made based on the quantity of information (size of the data) that needs to be routed and accordingly transmitter power leels are switched as an energy efficient routing strategy. The proposed routing protocol switches radio states based on the received signal strength (RSSI) acquiring only relevant information and piggybacks information in data packets for reduced controlled information exchange. The proposed algorithm has been implemented in Network Simulator (NS2) and the effectiveness of the protocol has been proved in comparison with diffusion paradigm

    Energy aware and privacy preserving protocols for ad hoc networks with applications to disaster management

    Get PDF
    Disasters can have a serious impact on the functioning of communities and societies. Disaster management aims at providing efficient utilization of resources during pre-disaster (e.g. preparedness and prevention) and post-disaster (e.g. recovery and relief) scenarios to reduce the impact of disasters. Wireless sensors have been extensively used for early detection and prevention of disasters. However, the sensor\u27s operating environment may not always be congenial to these applications. Attackers can observe the traffic flow in the network to determine the location of the sensors and exploit it. For example, in intrusion detection systems, the information can be used to identify coverage gaps and avoid detection. Data source location privacy preservation protocols were designed in this work to address this problem. Using wireless sensors for disaster preparedness, recovery and relief operations can have high deployment costs. Making use of wireless devices (e.g. smartphones and tablets) widely available among people in the affected region is a more practical approach. Disaster preparedness involves dissemination of information among the people to make them aware of the risks they will face in the event of a disaster and how to actively prepare for them. The content is downloaded by the people on their smartphones and tablets for ubiquitous access. As these devices are primarily constrained by their available energy, this work introduces an energy-aware peer-to-peer file sharing protocol for efficient distribution of the content and maximizing the lifetime of the devices. Finally, the ability of the wireless devices to build an ad hoc network for capturing and collecting data for disaster relief and recovery operations was investigated. Specifically, novel energy-adaptive mechanisms were designed for autonomous creation of the ad hoc network, distribution of data capturing task among the devices, and collection of data with minimum delay --Abstract, page iii

    Overview of Wireless Sensor Network

    Get PDF

    Design and Analysis of Soft Computing Based Improved Routing Protocol in WSN for Energy Efficiency and Lifetime Enhancement

    Get PDF
    Mobile wireless sensor networks have been developed as a result of recent advancements in wireless technologies. Sensors in the network are low-cost and have a short battery life, in addition to their mobility. They are more applicable in terms of the essential properties of these networks. These networks have a variety of uses, including search and rescue operations, health and environmental monitoring, and intelligent traffic management systems, among others. According to the application requirements, mobile wireless sensor nodes are energy limited equipment, so energy conservation is one of the most significant considerations in the design of these networks. Aside from the issues posed by sensor node mobility, we should also consider routing and dynamic clustering. According to studies, cluster models with configurable parameters have a substantial impact on reducing energy usage and extending the network's lifetime. As a result, the primary goal of this study is to describe and select a smart method for clustering in mobile wireless sensor networks utilizing evolutionary algorithms in order to extend the network's lifetime and ensure packet delivery accuracy. For grouping sensor nodes in this work, the Genetic Algorithm is applied initially, followed by Bacterial Conjugation. The simulation's results show a significant increase in clustering speed acceleration. The speed of the nodes is taken into account in the suggested approach for calibrating mobile wireless sensor nodes
    corecore