1,458 research outputs found

    Transparent resource sharing framework for internet services on handheld devices

    Get PDF
    Handheld devices have limited processing power and a short battery lifetime. As a result, computationally intensive applications cannot run appropriately or cause the device to run out of battery too early. Additionally, Internet-based service providers targeting these mobile devices lack information to estimate the remaining battery autonomy and have no view on the availability of idle resources in the neighborhood of the handheld device. These battery-related issues create an opportunity for Internet providers to broaden their role and start managing energy aspects of battery-driven mobile devices inside the home. In this paper, we propose an energy-aware resource-sharing framework that enables Internet access providers to delegate (a part of) a client application from a handheld device to idle resources in the LAN, in a transparent way for the end-user. The key component is the resource sharing service, hosted on the LAN gateway, which can be remotely queried and managed by the Internet access provider. The service includes a battery model to predict the remaining battery lifetime. We describe the concept of resource-sharing-as-a-service that allows users of handheld devices to subscribe to the resource sharing service. In a proof-of-concept, we evaluate the delay to offload a client application to an idle computer and study the impact on battery autonomy as a function of the CPU cycles that can be offloaded

    An Efficient Transport Protocol for delivery of Multimedia An Efficient Transport Protocol for delivery of Multimedia Content in Wireless Grids

    Get PDF
    A grid computing system is designed for solving complicated scientific and commercial problems effectively,whereas mobile computing is a traditional distributed system having computing capability with mobility and adopting wireless communications. Media and Entertainment fields can take advantage from both paradigms by applying its usage in gaming applications and multimedia data management. Multimedia data has to be stored and retrieved in an efficient and effective manner to put it in use. In this paper, we proposed an application layer protocol for delivery of multimedia data in wireless girds i.e. multimedia grid protocol (MMGP). To make streaming efficient a new video compression algorithm called dWave is designed and embedded in the proposed protocol. This protocol will provide faster, reliable access and render an imperceptible QoS in delivering multimedia in wireless grid environment and tackles the challenging issues such as i) intermittent connectivity, ii) device heterogeneity, iii) weak security and iv) device mobility.Comment: 20 pages, 15 figures, Peer Reviewed Journa

    A Methodology for Engineering Collaborative and ad-hoc Mobile Applications using SyD Middleware

    Get PDF
    Today’s web applications are more collaborative and utilize standard and ubiquitous Internet protocols. We have earlier developed System on Mobile Devices (SyD) middleware to rapidly develop and deploy collaborative applications over heterogeneous and possibly mobile devices hosting web objects. In this paper, we present the software engineering methodology for developing SyD-enabled web applications and illustrate it through a case study on two representative applications: (i) a calendar of meeting application, which is a collaborative application and (ii) a travel application which is an ad-hoc collaborative application. SyD-enabled web objects allow us to create a collaborative application rapidly with limited coding effort. In this case study, the modular software architecture allowed us to hide the inherent heterogeneity among devices, data stores, and networks by presenting a uniform and persistent object view of mobile objects interacting through XML/SOAP requests and responses. The performance results we obtained show that the application scales well as we increase the group size and adapts well within the constraints of mobile devices

    MAGDA: A Mobile Agent based Grid Architecture

    Get PDF
    Mobile agents mean both a technology and a programming paradigm. They allow for a flexible approach which can alleviate a number of issues present in distributed and Grid-based systems, by means of features such as migration, cloning, messaging and other provided mechanisms. In this paper we describe an architecture (MAGDA – Mobile Agent based Grid Architecture) we have designed and we are currently developing to support programming and execution of mobile agent based application upon Grid systems

    RFID Applications and Challenges

    Get PDF

    Bringing Handhelds to the Grid Resourcefully: A Surrogate Middleware Approach

    Full text link
    • …
    corecore