3,631 research outputs found

    QIBMRMN: Design of a Q-Learning based Iterative sleep-scheduling & hybrid Bioinspired Multipath Routing model for Multimedia Networks

    Get PDF
    Multimedia networks utilize low-power scalar nodes to modify wakeup cycles of high-performance multimedia nodes, which assists in optimizing the power-to-performance ratios. A wide variety of machine learning models are proposed by researchers to perform this task, and most of them are either highly complex, or showcase low-levels of efficiency when applied to large-scale networks. To overcome these issues, this text proposes design of a Q-learning based iterative sleep-scheduling and fuses these schedules with an efficient hybrid bioinspired multipath routing model for large-scale multimedia network sets. The proposed model initially uses an iterative Q-Learning technique that analyzes energy consumption patterns of nodes, and incrementally modifies their sleep schedules. These sleep schedules are used by scalar nodes to efficiently wakeup multimedia nodes during adhoc communication requests. These communication requests are processed by a combination of Grey Wolf Optimizer (GWO) & Genetic Algorithm (GA) models, which assist in the identification of optimal paths. These paths are estimated via combined analysis of temporal throughput & packet delivery performance, with node-to-node distance & residual energy metrics. The GWO Model uses instantaneous node & network parameters, while the GA Model analyzes temporal metrics in order to identify optimal routing paths. Both these path sets are fused together via the Q-Learning mechanism, which assists in Iterative Adhoc Path Correction (IAPC), thereby improving the energy efficiency, while reducing communication delay via multipath analysis. Due to a fusion of these models, the proposed Q-Learning based Iterative sleep-scheduling & hybrid Bioinspired Multipath Routing model for Multimedia Networks (QIBMRMN) is able to reduce communication delay by 2.6%, reduce energy consumed during these communications by 14.0%, while improving throughput by 19.6% & packet delivery performance by 8.3% when compared with standard multimedia routing techniques

    Optimization of Energy-Efficient Cluster Head Selection Algorithm for Internet of Things in Wireless Sensor Networks

    Get PDF
    The Internet of Things (IoT) now uses the Wireless Sensor Network (WSN) as a platform to sense and communicate data. The increase in the number of embedded and interconnected devices on the Internet has resulted in a need for software solutions to manage them proficiently in an elegant and scalable manner. Also, these devices can generate massive amounts of data, resulting in a classic Big Data problem that must be stored and processed. Large volumes of information have to be produced by using IoT applications, thus raising two major issues in big data analytics. To ensure an efficient form of mining of both spatial and temporal data, a sensed sample has to be collected. So for this work, a new strategy to remove redundancy has been proposed. This classifies all forms of collected data to be either relevant or irrelevant in choosing suitable information even before they are forwarded to the base station or the cluster head. A Low-Energy Adaptive Clustering Hierarchy (LEACH) is a cluster-based routing protocol that uses cluster formation. The LEACH chooses one head from the network sensor nodes, such as the Cluster Head (CH), to rotate the role to a new distributed energy load. The CHs were chosen randomly with the possibility of all CHs being concentrated in one locality. The primary idea behind such dynamic clustering was them resulted in more overheads due to changes in the CH and advertisements. Therefore, the LEACH was not suitable for large networks. Here, Particle Swarm Optimization (PSO) and River Formation Dynamics are used to optimize the CH selection (RFD). The results proved that the proposed method to have performed better compared to other methods

    A Grey Wolf Optimization-Based Clustering Approach for Energy Efficiency in Wireless Sensor Networks

    Get PDF
    In the realm of Wireless Sensor Networks, the longevity of a sensor node's battery is pivotal, especially since these nodes are often deployed in locations where battery replacement is not feasible. Heterogeneous networks introduce additional challenges due to varying buffer capacities among nodes, necessitating timely data transmission to prevent loss from buffer overflows. Despite numerous attempts to address these issues, previous solutions have been deficient in significant respects. Our innovative strategy employs Grey Wolf Optimization for Cluster Head selection within heterogeneous networks, aiming to concurrently optimise energy efficiency and buffer capacity. We conducted comprehensive simulations using Network Simulator 2, with results analysed in MATLAB, focusing on metrics such as energy depletion rates, remaining energy, node-to-node distance, node count, packet delivery, and average energy in the cluster head selection process. Our approach was benchmarked against leading protocols like LEACH and PEGASIS, considering five key performance indicators: energy usage, network lifespan, the survival rate of nodes over time, data throughput, and remaining network energy. The simulations demonstrate that our Grey Wolf Optimisation method outperforms conventional protocols, showing a 9% reduction in energy usage, a 12% increase in node longevity, a 9.8% improvement in data packet delivery, and a 12.2% boost in data throughput

    BSCSML: Design of an Efficient Bioinspired Security &Privacy Model for Cyber Physical System using Machine Learning

    Get PDF
    With the increasing prevalence of Smart Grid Cyber Physical Systems with Advanced Metering Infrastructure (SG CPS AMI), securing their internal components has become one of the paramount concerns. Traditional security mechanisms have proven to be insufficient in defending against sophisticated attacks. Bioinspired security and privacy models have emerged as promising solutions due to their stochastic solutions. This paper proposes a novel bio-inspired security and privacy model for SG CPS AMI that utilizes machine learning to strengthen their security levels. The proposed model is inspired by the hybrid Grey Wolf Teacher Learner based Optimizer (GWTLbO) Method’s ability to detect and respond to threats in real-time deployments. The GWTLbO Model also ensures higher privacy by selecting optimal methods between k-privacy, t-closeness & l-diversity depending upon contextual requirements. This study improves system accuracy and efficiency under diverse attacks using machine learning techniques. The method uses supervised learning to teach the model to recognize known attack trends and uncontrolled learning to spot unknown attacks. Our model was tested using real-time IoT device data samples. The model identified Zero-Day Attacks, Meter Bypass, Flash Image Manipulation, and Buffer-level attacks. The proposed model detects and responds to attacks with high accuracy and low false-positive rates. In real-time operations, the proposed model can handle huge volumes of data efficiently. The bioinspired security and privacy model secures CPS efficiently and is scalable for various cases. Machine learning techniques can improve the security and secrecy of these systems and revolutionize defense against different attacks

    SSFSCE: Design of a Sleep Scheduling based Fan Shaped Clustering Model to enhance working Energy Efficiency of WSN

    Get PDF
    To enhance energy level in WSN is a research requirement, which assists in improving their lifetime over a series of communications. To achieve this target, a various variety of clustering & sleep scheduling models are discussed by researchers. Most of these models deploy static clustering & sleep scheduling operations, which limits their applicability & scalability levels. Moreover, dynamic clustering & scheduling models are highly complex, which reduces temporal QoS performance under real-time use cases. In order to reduce the probability of these issues, this text discusses design of the proposed Sleep Scheduling based Fan Shaped Clustering Model to enhance working Energy Efficiency of WSN. The proposed model initially deploys a Grey Wolf Optimization (GWO) Method for dynamic sleep scheduling via temporal performance analysis. The GWO Method models a fitness function that combines temporal usage levels, temporal Quality of Service (QoS), and temporal energy levels. Based on this modelling process, nodes were categorized into wake & sleep nodes, which were further clustered via destination-aware Fan Shaped Clustering (FSC), that assisted in improving QoS performance under multiple scenarios. The FSC Model was combined with a QoS-aware routing model, that assisted in selection of routing paths that can achieve low delay, high throughput, and high packet delivery with higher energy efficiency levels. Efficiency of the model was tested on node & network conditions, and its QoS performance was checked in terms of communication delay, consumption of energy, level of throughput, and Packet Delivery Ratio (PDR) levels. On the basis of these comparative evaluations, it is observed that the new proposed model is able to enhance end-to-end delay by 8.5%, reduce level of energy by 15.5%, while increasing throughput by 8.3%, and PDR by 1.5%, thus making it useful for a different real-time conditions

    Resource-efficient workload task scheduling for cloud-assisted internet of things environment

    Get PDF
    One of the most challenging tasks in the internet of things-cloud-based environment is the resource allocation for the tasks. The cloud provides various resources such as virtual machines, computational cores, networks, and other resources for the execution of the various tasks of the internet of things (IoT). Moreover, some methods are used for executing IoT tasks using an optimal resource management system but these methods are not efficient. Hence, in this research, we present a resource-efficient workload task scheduling (RWTS) model for a cloud-assisted IoT environment to execute the IoT task which utilizes few numbers of resources to bring a good tradeoff, achieve high performance using fewer resources of the cloud, compute the number of resources required for the execution of the IoT task such as bandwidth and computational core. Furthermore, this model mainly focuses to reduce energy consumption and also provides a task scheduling model to schedule the IoT tasks in an IoT-cloud-based environment. The experimentation has been done using the Montage workflow and the results have been obtained in terms of execution time, power sum, average power, and energy consumption. When compared with the existing model, the RWTS model performs better when the size of the tasks is increased

    Enhancement of Metaheuristic Algorithm for Scheduling Workflows in Multi-fog Environments

    Get PDF
    Whether in computer science, engineering, or economics, optimization lies at the heart of any challenge involving decision-making. Choosing between several options is part of the decision- making process. Our desire to make the "better" decision drives our decision. An objective function or performance index describes the assessment of the alternative's goodness. The theory and methods of optimization are concerned with picking the best option. There are two types of optimization methods: deterministic and stochastic. The first is a traditional approach, which works well for small and linear problems. However, they struggle to address most of the real-world problems, which have a highly dimensional, nonlinear, and complex nature. As an alternative, stochastic optimization algorithms are specifically designed to tackle these types of challenges and are more common nowadays. This study proposed two stochastic, robust swarm-based metaheuristic optimization methods. They are both hybrid algorithms, which are formulated by combining Particle Swarm Optimization and Salp Swarm Optimization algorithms. Further, these algorithms are then applied to an important and thought-provoking problem. The problem is scientific workflow scheduling in multiple fog environments. Many computer environments, such as fog computing, are plagued by security attacks that must be handled. DDoS attacks are effectively harmful to fog computing environments as they occupy the fog's resources and make them busy. Thus, the fog environments would generally have fewer resources available during these types of attacks, and then the scheduling of submitted Internet of Things (IoT) workflows would be affected. Nevertheless, the current systems disregard the impact of DDoS attacks occurring in their scheduling process, causing the amount of workflows that miss deadlines as well as increasing the amount of tasks that are offloaded to the cloud. Hence, this study proposed a hybrid optimization algorithm as a solution for dealing with the workflow scheduling issue in various fog computing locations. The proposed algorithm comprises Salp Swarm Algorithm (SSA) and Particle Swarm Optimization (PSO). In dealing with the effects of DDoS attacks on fog computing locations, two Markov-chain schemes of discrete time types were used, whereby one calculates the average network bandwidth existing in each fog while the other determines the number of virtual machines existing in every fog on average. DDoS attacks are addressed at various levels. The approach predicts the DDoS attack’s influences on fog environments. Based on the simulation results, the proposed method can significantly lessen the amount of offloaded tasks that are transferred to the cloud data centers. It could also decrease the amount of workflows with missed deadlines. Moreover, the significance of green fog computing is growing in fog computing environments, in which the consumption of energy plays an essential role in determining maintenance expenses and carbon dioxide emissions. The implementation of efficient scheduling methods has the potential to mitigate the usage of energy by allocating tasks to the most appropriate resources, considering the energy efficiency of each individual resource. In order to mitigate these challenges, the proposed algorithm integrates the Dynamic Voltage and Frequency Scaling (DVFS) technique, which is commonly employed to enhance the energy efficiency of processors. The experimental findings demonstrate that the utilization of the proposed method, combined with the Dynamic Voltage and Frequency Scaling (DVFS) technique, yields improved outcomes. These benefits encompass a minimization in energy consumption. Consequently, this approach emerges as a more environmentally friendly and sustainable solution for fog computing environments

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime
    • …
    corecore