440 research outputs found

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference ā€œOptimisation of Mobile Communication Networksā€ focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Adaptive Momentum-Based Motion Detection Approach and Its Application on Handoff in Wireless Networks

    Get PDF
    Positioning and tracking technologies can detect the location and the movement of mobile nodes (MNs), such as cellular phone, vehicular and mobile sensor, to predict potential handoffs. However, most motion detection mechanisms require additional hardware (e.g., GPS and directed antenna), costs (e.g., power consumption and monetary cost) and supply systems (e.g., network fingerprint server). This paper proposes a Momentum of Received Signal Strength (MRSS) based motion detection method and its application on handoff. MRSS uses the exponentially weighted moving average filter with multiple moving average window size to analyze the received radio signal. With MRSS, an MN can predict its motion state and make a handoff trigger at the right time without any assistance from positioning systems. Moreover, a novel motion state dependent MRSS scheme called Dynamic MRSS (DMRSS) algorithm is proposed to adjust the motion detection sensitivity. In our simulation, the MRSS- and DMRSS-based handoff algorithms can reduce the number of unnecessary handoffs up to 44% and save battery power up to 75%

    Project BeARCAT : Baselining, Automation and Response for CAV Testbed Cyber Security : Connected Vehicle & Infrastructure Security Assessment

    Get PDF
    Connected, software-based systems are a driver in advancing the technology of transportation systems. Advanced automated and autonomous vehicles, together with electrification, will help reduce congestion, accidents and emissions. Meanwhile, vehicle manufacturers see advanced technology as enhancing their products in a competitive market. However, as many decades of using home and enterprise computer systems have shown, connectivity allows a system to become a target for criminal intentions. Cyber-based threats to any system are a problem; in transportation, there is the added safety implication of dealing with moving vehicles and the passengers within

    Enabling self organisation for future cellular networks.

    Get PDF
    The rapid growth in mobile communications due to the exponential demand for wireless access is causing the distribution and maintenance of cellular networks to become more complex, expensive and time consuming. Lately, extensive research and standardisation work has been focused on the novel paradigm of self-organising network (SON). SON is an automated technology that allows the planning, deployment, operation, optimisation and healing of the network to become faster and easier by reducing the human involvement in network operational tasks, while optimising the network coverage, capacity and quality of service. However, these SON autonomous features cannot be achieved with the current drive test coverage assessment approach due to its lack of automaticity which results in huge delays and cost. Minimization of drive test (MDT) has recently been standardized by 3GPP as a key self- organising network (SON) feature. MDT allows coverage to be estimated at the base station using user equipment (UE) measurement reports with the objective to eliminate the need for drive tests. However, most MDT based coverage estimation methods recently proposed in literature assume that UE position is known at the base station with 100% accuracy, an assumption that does not hold in reality. In this work, we develop a novel and accurate analytical model that allows the quantification of error in MDT based autonomous coverage estimation (ACE) as a function of error in UE as well as base station (user deployed cell) positioning. We first consider a circular cell with an omnidirectional antenna and then we use a three-sectored cell and see how the system is going to be affected by the UE and the base station (user deployed cell) geographical location information errors. Our model also allows characterization of error in ACE as function of standard deviation of shadowing in addition to the path-loss

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Review of advanced road materials, structures, equipment, and detection technologies

    Get PDF
    As a vital and integral component of transportation infrastructure, pavement has a direct and tangible impact on socio-economic sustainability. In recent years, an influx of groundbreaking and state-of-the-art materials, structures, equipment, and detection technologies related to road engineering have continually and progressively emerged, reshaping the landscape of pavement systems. There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies. Therefore, Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of ā€œadvanced road materials, structures, equipment, and detection technologiesā€. This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars, all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering. It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering: advanced road materials, advanced road structures and performance evaluation, advanced road construction equipment and technology, and advanced road detection and assessment technologies
    • ā€¦
    corecore