7,064 research outputs found

    A simulation method for determining the optical response of highly complex photonic structures of biological origin

    Get PDF
    We present a method based on a time domain simulation of wave propagation that allows studying the optical response of a broad range of dielectric photonic structures. This method is particularly suitable for dealing with complex biological structures. One of the main features of the proposed approach is the simple and intuitive way of defining the setup and the photonic structure to be simulated, which can be done by feeding the simulation with a digital image of the structure. We also develop a set of techniques to process the behavior of the evolving waves within the simulation. These techniques include a direction filter, that permits decoupling of waves travelling simultaneously in different directions, a dynamic differential absorber, to cancel the waves reflected at the edges of the simulation space, a multi-frequency excitation scheme based on a filter that allows decoupling waves of different wavelengths travelling simultaneously, and a near-to-far-field approach to evaluate the resulting wavefield outside the simulation domain. We validate the code and, as an example, apply it to the complex structure found in a microorganism called Diachea leucopoda, which exhibits a multicolor iridescent appearance.Comment: 43 pages, 19 figure

    Automatic Domain Decomposition in Finite Element Method – A Comparative Study

    Get PDF
    In this paper, an automatic data clustering approach is presented using some concepts of the graph theory. Some Cluster Validity Index (CVI) is mentioned, and DB Index is defined as the objective function of meta-heuristic algorithms. Six Finite Element meshes are decomposed containing two- and three- dimensional types that comprise simple and complex meshes. Six meta-heuristic algorithms are utilized to determine the optimal number of clusters and minimize the decomposition problem. Finally, corresponding statistical results are compared

    Prediction of Water Consumption in Hospitals Based on a Modified Grey GM (0, 1∣sin) Model of Oscillation Sequence: The Example of Wuhan City

    Get PDF
    Water shortage is one of the main factors limiting urban construction and development. Scientific forecasting of water consumption is an important approach for the rational allocation of water resources. Taking the hospitals in Wuhan City as an example and basing the analysis on the characteristics of actual water consumption, we proposed a modified grey GM (0, 1∣sin) model of oscillation sequence. Using the grey theory, the variable weight-strengthening buffer operator (VWSBO) was introduced into this model to weaken the interference of the disturbance term on the data sequence. The actual quarterly total water consumption data for hospitals in Wuhan City during the period from 2010 to 2012 were used to verify the effectiveness and practicality of this modified grey GM (0, 1∣sin) model in predicting water consumption. In terms of the model’s fitting performance, the mean absolute percentage error (MAPE) of the modified model was 3.77%, indicating a higher prediction accuracy than the traditional grey GM (0, 1∣sin) model of oscillation sequences. Therefore, the modified grey GM (0, 1∣sin) model we established in this study can provide a scientific reference for administrative departments to forecast water consumption

    Analysis of Petri Net Models through Stochastic Differential Equations

    Full text link
    It is well known, mainly because of the work of Kurtz, that density dependent Markov chains can be approximated by sets of ordinary differential equations (ODEs) when their indexing parameter grows very large. This approximation cannot capture the stochastic nature of the process and, consequently, it can provide an erroneous view of the behavior of the Markov chain if the indexing parameter is not sufficiently high. Important phenomena that cannot be revealed include non-negligible variance and bi-modal population distributions. A less-known approximation proposed by Kurtz applies stochastic differential equations (SDEs) and provides information about the stochastic nature of the process. In this paper we apply and extend this diffusion approximation to study stochastic Petri nets. We identify a class of nets whose underlying stochastic process is a density dependent Markov chain whose indexing parameter is a multiplicative constant which identifies the population level expressed by the initial marking and we provide means to automatically construct the associated set of SDEs. Since the diffusion approximation of Kurtz considers the process only up to the time when it first exits an open interval, we extend the approximation by a machinery that mimics the behavior of the Markov chain at the boundary and allows thus to apply the approach to a wider set of problems. The resulting process is of the jump-diffusion type. We illustrate by examples that the jump-diffusion approximation which extends to bounded domains can be much more informative than that based on ODEs as it can provide accurate quantity distributions even when they are multi-modal and even for relatively small population levels. Moreover, we show that the method is faster than simulating the original Markov chain

    A Model-Based Framework for the Smart Manufacturing of Polymers

    Get PDF
    It is hard to point a daily activity in which polymeric materials or plastics are not involved. The synthesis of polymers occurs by reacting small molecules together to form, under certain conditions, long molecules. In polymer synthesis, it is mandatory to assure uniformity between batches, high-quality of end-products, efficiency, minimum environmental impact, and safety. It remains as a major challenge the establishment of operational conditions capable of achieving all objectives together. In this dissertation, different model-centric strategies are combined, assessed, and tested for two polymerization systems. The first system is the synthesis of polyacrylamide in aqueous solution using potassium persulfate as initiator in a semi-batch reactor. In this system, the proposed framework integrates nonlinear modelling, dynamic optimization, advanced control, and nonlinear state estimation. The objectives include the achievement of desired polymer characteristics through feedback control and a complete motoring during the reaction. The estimated properties are close to experimental values, and there is a visible noise reduction. A 42% improvement of set point accomplishment in average is observed when comparing feedback control combined with a hybrid discrete-time extended Kalman filter (h-DEKF) and feedback control only. The 4-state geometric observer (GO) with passive structure, another state estimation strategy, shows the best performance. Besides achieving smooth signal processing, the observer improves 52% the estimation of the final molecular weight distribution when compared with the h-DEKF. The second system corresponds to the copolymerization of ethylene with 1,9-decadiene using a metallocene catalyst in a semi-batch reactor. The evaluated operating conditions consider different diene concentrations and reaction temperatures. Initially, the nonlinear model is validated followed by a global sensitivity analysis, which permits the selection of the important parameters. Afterwards, the most important kinetic parameters are estimated online using an extended Kalman filter (EKF), a variation of the GO that uses a preconditioner, and a data-driven strategy referred as the retrospective cost model refinement (RCMR) algorithm. The first two strategies improve the measured signal, but fail to predict other properties. The RCMR algorithm demonstrates an adequate estimation of the unknown parameters, and the estimates converge close to theoretical values without requiring prior knowledge

    Forecasting the multifactorial interval grey number sequences using grey relational model and GM (1, N) model based on effective information transformation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In the context of data eruption, the data often shows a short-term pattern and changes rapidly which makes it difficult to use a single real value to express. For this kind of small-sample and interval data, how to analyze and predict muti-factor sequences efficiently becomes a problem. By this means, grey system theory (GST) is developed in which the interval grey numbers, as a typical object of GST, characterize the range of data and the grey relational and prediction models analyze the relations of multiple grey numbers and forecast the future. However, traditional grey relative relational model has some limitations: the results obtained always show low resolution and there are no extractions for the interval feature information from the interval grey number sequence. In this paper, the grey relational analysis model (GRA) based on effective information transformation of interval grey numbers is established, which contains comprehensive information of area differences and slope variances and optimizes the resolution of traditional grey degree. Then, according to the relational results, the multivariable GM model (GM(1,N)) is proposed to forecast the interval grey number sequence. To verify the effectiveness of this novel model, it is established to analyze the relationship between the degree of traffic congestion and its relevant factors in the Yangtze River Delta of China and predict the development of urban traffic congestion degrees in this area over the next five years. In addition, some traditional statistical methods (principal component analysis, multiple linear regression models and curve regression models) are established for comparisons. The results show high performances of the novel GRA model and GM(1,N) model, which means the models proposed in this paper are suitable for interval grey numbers from regional data. The strengths which recommend the use of this novel method lie in its high recognition mechanism and muti-angle information transformation for interval grey numbers as well as its characteristic of timeliness in information processing

    Relational Research between China’s Marine S&T and Economy Based on RPGRA Model

    Get PDF
    To make up the defect of the existing model, an improved grey relational model based on radian perspective (RPGRA) is put forward. According to the similarity of the relative change trend of time series translating traditional grey relational degree into radian algorithm within different piecewise functions, it greatly improves the accuracy and validity of the research results by making full use of the poor information in time series. Meanwhile, the properties of the RPGRA were discussed. The relationship between China’s marine S&T and marine economy is researched using the new model, so the validity and creditability of RPGRA are illustrated. The empirical results show that marine scientific and technological research projects, marine scientific and technological patents granted, and research funds receipts of the marine scientific research institutions have greater relationship with GOP, which indicates that they have more impact on China’s marine economy

    COVID-19 Outbreak Prediction with Machine Learning

    Get PDF
    Abstract: Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and these models are popular in the media. Due to a high Level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models need to be improved. This paper presents a comparative analysis ofmachine learning and soft computingmodels to predict the COVID-19 outbreak as an alternative to susceptible–infected–recovered (SIR) and susceptible-exposed-infectious-removed (SEIR) models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP; and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior across nations, this study suggests machine Learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. This paper further suggests that a genuine novelty in outbreak prediction can be realized by integrating machine learning and SEIR models.publishedVersio
    • …
    corecore