78 research outputs found

    From theory to experimental evaluation: resource management in software-defined vehicular networks

    Get PDF
    Managing resources in dynamic vehicular environments is a tough task, which is becoming more challenging with the increased number of access technologies today available in connected cars (e.g., IEEE 802.11, LIE), in the variety of applications provided on the road (e.g., safety, traffic efficiency, and infotainment), in the amount of driving awareness/coordination required (e.g., local, context, and cooperative awareness), and in the level of automation toward zero-accident driving (e.g., platooning and autonomous driving). The open programmability and logically centralized control features of the software-defined networking (SDN) paradigm offer an attractive means to manage communication and networking resources in the vehicular environment and promise improved performance. In this paper, we enumerate the potentials of software-defined vehicular networks, analyze the need to rethink the traditional SDN approach from theoretical and practical standpoints when applied in this application context, and present an emulation approach based on the proposed node car architecture in Mininet-WiFi to showcase the applicability and some expected benefits of SDN in a selected use case scenario530693076FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP14/18482-

    Highlights: IEEE ITS Society Technical Committee on Mobile Communications Networks for ITS

    Full text link
    [EN] The TC on 'Mobile Networks for ITS' has been in existence since 2005. It will continue to initiate activities (through journal and magazine special issues, workshops, conferences, forums, etc.,) and to promote the technical interactions among professionals in the field. The success of the TC will depend on the contributions of its members and organizers. We would like to thank Prof. Urbano Nunes (VP Technical Activities) for inviting us to submit this highlight. We would also like to thank all the TC members who have supported us over the years. We look forward to your continual participation in the future.This work was partially supported by the Ministerio de Ciencia e Innovación, Spain, under Grant TIN2011-27543-C03-01.Toh, CK.; Higashino, T.; Cano Escribá, JC.; Weigle, MC. (2012). Highlights: IEEE ITS Society Technical Committee on Mobile Communications Networks for ITS. IEEE Intelligent Transportation Systems Magazine. 4(1):33-37. doi:10.1109/MITS.2011.2178875S33374

    Exploring sustainable pathways for urban traffic decarbonization: vehicle technologies, management strategies, and driving behaviour

    Full text link
    The global fight against climate change and air pollution prioritizes the transition to sustainable transportation options. Understanding the impacts of various sustainable pathways on emissions, travel time, and costs is crucial for researchers and policymakers. This research conducts a comprehensive microsimulation of traffic and emissions in downtown Toronto, Canada, to examine decarbonization scenarios. The resulting 140 scenarios involve different fuel types, Connected and Automated Vehicles (CAV) penetration rates, and routing strategies combined with driving style. To achieve this, transformers-based prediction models accurately forecast Greenhouse Gas (GHG) and Nitrogen Oxides (NOx) emissions and average speed for eco-routing. The study finds that 100% battery electric vehicles have the lowest GHG emissions, showing their potential as a sustainable transportation solution. However, challenges related to cost and availability persist. Hybrid Electric Vehicles and e-fuels demonstrate considerable emission reductions, emerging as promising alternatives. Integrating CAVs with anticipatory routing strategies significantly reduces GHG emissions. Additionally, eco-driving practices and eco-routing strategies have a notable impact on NOx emissions and travel time. Comprehensive cost analysis provides valuable insights into the economic implications of various strategies and technologies. These findings offer guidance to various stakeholders in formulating effective strategies, behaviour changes, and policies for emission reduction and sustainable transportation development

    Smart mobility: a survey

    Get PDF
    Internet of Things (IoT) describes a world where everyday objects are always connected to the Internet, allowing them to communicate and interact with each other. By connecting these everyday objects to the Internet and making them available everywhere at any time, IoT allows to remotely monitor, manage, and gather status information about them and their surrounding environment. IoT is a revolutionary concept that brought new experiences to everyday life and enabled Smart City initiatives all over the world. These initiatives are using a combination of technology paired with physical infrastructure and services, to improve people’s quality of life. One of the high priority domain to support the Smart City’s vision is the field of Smart Mobility. This paper reviews the current IoT approaches and concepts related to Smart Cities and Smart Mobility. In addition, it analyzes distinct features and numerous applications covering both Intelligent Transportation and Real Time Traffic Management Systems.info:eu-repo/semantics/publishedVersio

    Smart mobility: a survey

    Get PDF
    Internet of Things (IoT) describes a world where everyday objects are always connected to the Internet, allowing them to communicate and interact with each other. By connecting these everyday objects to the Internet and making them available everywhere at any time, IoT allows to remotely monitor, manage, and gather status information about them and their surrounding environment. IoT is a revolutionary concept that brought new experiences to everyday life and enabled Smart City initiatives all over the world. These initiatives are using a combination of technology paired with physical infrastructure and services, to improve people's quality of life. One of the high-priority domain to support the Smart City's vision is the field of Smart Mobility. This paper reviews the current IoT approaches and concepts related to Smart Cities and Smart Mobility. In addition, it analyzes distinct features and numerous applications covering both Intelligent Transportation and Real Time Traffic Management Systems

    A Mini Review of Peer-to-Peer (P2P) for Vehicular Communication

    Get PDF
    In recent times, peer-to-peer (P2P) has evolved, where it leverages the capability to scale compared to server-based networks. Consequently, P2P has appeared to be the future distributed systems in emerging several applications. P2P is actually a disruptive technology for setting up applications that scale to numerous concurrent individuals. Thus, in a P2P distributed system, individuals become themselves as peers through contributing, sharing, and managing the resources in a network. In this paper, P2P for vehicular communication is explored. A comprehensive of the functioning concept of both P2P along with vehicular communication is examined. In addition, the advantages are furthermore conversed for a far better understanding on the implementation

    A Survey on platoon-based vehicular cyber-physical systems

    Get PDF
    Vehicles on the road with some common interests can cooperatively form a platoon-based driving pattern, in which a vehicle follows another one and maintains a small and nearly constant distance to the preceding vehicle. It has been proved that, compared to driving individually, such a platoon-based driving pattern can significantly improve the road capacity and energy efficiency. Moreover, with the emerging vehicular adhoc network (VANET), the performance of platoon in terms of road capacity, safety and energy efficiency, etc., can be further improved. On the other hand, the physical dynamics of vehicles inside the platoon can also affect the performance of VANET. Such a complex system can be considered as a platoon-based vehicular cyber-physical system (VCPS), which has attracted significant attention recently. In this paper, we present a comprehensive survey on platoon-based VCPS. We first review the related work of platoon-based VCPS. We then introduce two elementary techniques involved in platoon-based VCPS: the vehicular networking architecture and standards, and traffic dynamics, respectively. We further discuss the fundamental issues in platoon-based VCPS, including vehicle platooning/clustering, cooperative adaptive cruise control (CACC), platoon-based vehicular communications, etc., and all of which are characterized by the tight coupled relationship between traffic dynamics and VANET behaviors. Since system verification is critical to VCPS development, we also give an overview of VCPS simulation tools. Finally, we share our view on some open issues that may lead to new research directions

    An Electric Vehicle Charging Management Scheme Based on Publish/Subscribe Communication Framework

    Get PDF
    Motivated by alleviating CO2 pollution, Electric Vehicle (EV) based applications have recently received wide interests from both commercial and research communities by using electric energy instead of traditional fuel energy. Although EVs are inherently with limited travelling distance, such limitation could be overcome by deploying public Charging Stations (CSs) to recharge EVs battery during their journeys. In this article, we propose a communication framework for on-the-move EV charging scenario, based on Publish/Subscribe (P/S) mechanism to disseminate necessary information about CSs to EVs. Concerning privacy issue, those EVs subscribing to such information could then locally make their individual decisions to select desired CSs for charging, rather than applying a centralized manner where private EV information is required to be released through communication. In this paper we propose a novel communication framework for on-the-move EV charging scenario, based on the Publish/Subscribe (P/S) mechanism for disseminating necessary CS information to EVs, in order for them to make optimized decisions on where to charge. A core part of our communication framework is the utilization of Road Side Units (RSUs) to bridge the information flow from CSs to EVs, which has been regarded as a type of cost-efficient communication infrastructure. Under this design, we introduce two complementary communication modes of signalling protocols, namely Push and Pull Modes, in order to enable the required information dissemination operation. Both analysis and simulation show the advantage of Pull Mode, in which the information is cached at RSUs to support asynchronous communication. We further propose a remote reservation service based on the Pull Mode, such that the CS-selection decision making can utilize the knowledge of EVs' charging reservation, as published from EVs through RSUs to CSs. Results show that both the performance at CS and EV sides are further improved based on using this anticipated information

    Guest Editorial: Introduction to the Special Issue on Advances in Smart and Green Transportation for Smart Cities

    Get PDF
    According to a recent UN report, continuing population growth and urbanization are expected to increase the world’s urban population by 2.5 billion people by 2050, with 2.9 billion extra vehicles. This massive growth in both population and number of vehicles, together with urban transformation and a trend toward mega cities, creates greater and more challenges for achieving smart transportation goals in smart cities. Therefore, new and more integrated modes of transportation, and environment friendly solutions are required to accommodate the rising demands of high liveability in smarter cities that offer safe, secure, affordable, reliable and sustainable transportation in old and new markets alike
    • …
    corecore