285 research outputs found

    Location Aided Energy Balancing Strategy in Green Cellular Networks

    Full text link
    Most cellular network communication strategies are focused on data traffic scenarios rather than energy balance and efficient utilization. Thus mobile users in hot cells may suffer from low throughput due to energy loading imbalance problem. In state of art cellular network technologies, relay stations extend cell coverage and enhance signal strength for mobile users. However, busy traffic makes the relay stations in hot area run out of energy quickly. In this paper, we propose an energy balancing strategy in which the mobile nodes are able to dynamically select and hand over to the relay station with the highest potential energy capacity to resume communication. Key to the strategy is that each relay station merely maintains two parameters that contains the trend of its previous energy consumption and then predicts its future quantity of energy, which is defined as the relay station potential energy capacity. Then each mobile node can select the relay station with the highest potential energy capacity. Simulations demonstrate that our approach significantly increase the aggregate throughput and the average life time of relay stations in cellular network environment.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:1108.5493 by other author

    Energy sustainable paradigms and methods for future mobile networks: A survey

    Full text link
    In this survey, we discuss the role of energy in the design of future mobile networks and, in particular, we advocate and elaborate on the use of energy harvesting (EH) hardware as a means to decrease the environmental footprint of 5G technology. To take full advantage of the harvested (renewable) energy, while still meeting the quality of service required by dense 5G deployments, suitable management techniques are here reviewed, highlighting the open issues that are still to be solved to provide eco-friendly and cost-effective mobile architectures. Several solutions have recently been proposed to tackle capacity, coverage and efficiency problems, including: C-RAN, Software Defined Networking (SDN) and fog computing, among others. However, these are not explicitly tailored to increase the energy efficiency of networks featuring renewable energy sources, and have the following limitations: (i) their energy savings are in many cases still insufficient and (ii) they do not consider network elements possessing energy harvesting capabilities. In this paper, we systematically review existing energy sustainable paradigms and methods to address points (i) and (ii), discussing how these can be exploited to obtain highly efficient, energy self-sufficient and high capacity networks. Several open issues have emerged from our review, ranging from the need for accurate energy, transmission and consumption models, to the lack of accurate data traffic profiles, to the use of power transfer, energy cooperation and energy trading techniques. These challenges are here discussed along with some research directions to follow for achieving sustainable 5G systems.Comment: Accepted by Elsevier Computer Communications, 21 pages, 9 figure

    An Overview of Cell Zooming Algorithms and Power Saving Capabilities in Wireless Networks

    Get PDF
    Cell zooming has emerged as a potential strategy to develop a green communication system in our society and it has become an essential research area of wireless communication. Aiming to highlight the trend of existing cell zooming algorithms and their power saving capabilities, this paper reviews a number of cell zooming algorithms that have been proposed in the literature. Static cell zooming algorithms are effective for off-peak hours and their maximum power saving capability is 50% since off-peak duration is typically not more than 12 hours.Meanwhile dynamic cell zooming algorithms are applicable in full-day operation and they are useful not only for power saving but also for load balancing. However, on/off switching delay, signalling overhead due to traffic information exchange and how to attain information of traffic spatial distribution are existing challenges in dynamic cell zooming algorithms. One noticeable point is that relative power saving in dynamic cell zooming algorithm is less than 50% if traffic spatial distribution is considered. Since location management (LM) was designed for effectively servicing to customers, further researches could lead to work on location management (LM) based cell zooming algorithms for both effective servicing and energy saving

    Traffic-and-interference aware base station switching for green cellular networks

    Get PDF
    Base station (BS) sleeping in cellular networks has emerged as a promising solution for more energy efficient communications, concomitant with lowering the network carbon footprint. Switching off specific BS entirely however, can lead to coverage holes and severe performance degradation. To avoid coverage holes, the transmit power of neighbouring BS must be commensurately increased, which can cause higher interference to other cell users. Recently a BS-RS (relay station) switching model has been proposed where the BS changes operating mode to a RS during off-peak periods rather than being completely turned off. This paper presents a traffic-aware and traffic-and-interference aware switching strategy for both the BS sleeping and BS-RS switching paradigms, which dynamically establishes the conditions for a BS to alter its working mode. The switching is based upon a dynamic traffic threshold allied with the received BS interference level. Analysis corroborates both new algorithms significantly improve network energy efficiency, while upholding the requisite quality of service provision

    セルラーシステムにおける周波数利用とエネルギー利用効率改善に関する研究

    Get PDF
    早大学位記番号:新7583早稲田大

    Energy and throughput efficient strategies for heterogeneous future communication networks

    Get PDF
    As a result of the proliferation of wireless-enabled user equipment and data-hungry applications, mobile data traffic has exponentially increased in recent years.This in-crease has not only forced mobile networks to compete on the scarce wireless spectrum but also to intensify their power consumption to serve an ever-increasing number of user devices. The Heterogeneous Network (HetNet) concept, where mixed types of low-power base stations coexist with large macro base stations, has emerged as a potential solution to address power consumption and spectrum scarcity challenges. However, as a consequence of their inflexible, constrained, and hardware-based configurations, HetNets have major limitations in adapting to fluctuating traffic patterns. Moreover, for large mobile networks, the number of low-power base stations (BSs) may increase dramatically leading to sever power consumption. This can easily overwhelm the benefits of the HetNet concept. This thesis exploits the adaptive nature of Software-defined Radio (SDR) technology to design novel and optimal communication strategies. These strategies have been designed to leverage the spectrum-based cell zooming technique, the long-term evolution licensed assisted access (LTE-LAA) concept, and green energy, in order to introduce a novel communication framework that endeavors to minimize overall network on-grid power consumption and to maximize aggregated throughput, which brings significant benefits for both network operators and their customers. The proposed strategies take into consideration user data demands, BS loads, BS power consumption, and available spectrum to model the research questions as optimization problems. In addition, this thesis leverages the opportunistic nature of the cognitive radio (CR) technique and the adaptive nature of the SDR to introduce a CR-based communication strategy. This proposed CR-based strategy alleviates the power consumption of the CR technique and enhances its security measures according to the confidentiality level of the data being sent. Furthermore, the introduced strategy takes into account user-related factors, such as user battery levels and user data types, and network-related factors, such as the number of unutilized bands and vulnerability level, and then models the research question as a constrained optimization problem. Considering the time complexity of the optimum solutions for the above-mentioned strategies, heuristic solutions were proposed and examined against existing solutions. The obtained results show that the proposed strategies can save energy consumption up to 18%, increase user throughput up to 23%, and achieve better spectrum utilization. Therefore, the proposed strategies offer substantial benefits for both network operators and users

    Disaster management using D2D communication with power transfer and clustering techniques

    Get PDF
    Device-to-device (D2D) communications as an underlay to cellular networks can not only increase the system capacity and energy efficiency but also enable national security and public safety services. A key requirement for these services is to provide alternative access to cellular networks when they are partially or fully damaged due to a natural disaster event. In this paper, we employ energy harvesting (EH) at the relay with simultaneous wireless information and power transfer to prolong the lifetime of energy constrained network. In particular, we consider a user equipment relay that harvests energy from radio frequency signal via base station and use harvested energy for D2D communications. We integrate clustering technique with D2D communications into cellular networks such that communication services can be maintained when the cellular infrastructure becomes partially dysfunctional. Simulation results show that our proposed EH-based D2D clustering model performs efficiently in terms of coverage, energy efficiency, and cluster formation to extend the communication area. Moreover, a novel concept of power transfer in D2D clustering with user equipment relay and cluster head is proposed to provide a new framework to handle critical and emergency situations. The proposed approach is shown to provide significant energy saving for both mobile users and clustering heads to survive in emergency and disaster situations

    Disaster management using D2D communication with power transfer and clustering techniques

    Get PDF
    Device-to-device (D2D) communications as an underlay to cellular networks can not only increase the system capacity and energy efficiency but also enable national security and public safety services. A key requirement for these services is to provide alternative access to cellular networks when they are partially or fully damaged due to a natural disaster event. In this paper, we employ energy harvesting (EH) at the relay with simultaneous wireless information and power transfer to prolong the lifetime of energy constrained network. In particular, we consider a user equipment relay that harvests energy from radio frequency signal via base station and use harvested energy for D2D communications. We integrate clustering technique with D2D communications into cellular networks such that communication services can be maintained when the cellular infrastructure becomes partially dysfunctional. Simulation results show that our proposed EH-based D2D clustering model performs efficiently in terms of coverage, energy efficiency, and cluster formation to extend the communication area. Moreover, a novel concept of power transfer in D2D clustering with user equipment relay and cluster head is proposed to provide a new framework to handle critical and emergency situations. The proposed approach is shown to provide significant energy saving for both mobile users and clustering heads to survive in emergency and disaster situations

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843
    corecore