157 research outputs found

    Resource Allocation for Device-to-Device Communications Underlaying Heterogeneous Cellular Networks Using Coalitional Games

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mmWave) communications included are emerging as a promising candidate for the fifth generation mobile network. With highly directional antenna arrays, mmWave links are able to provide several-Gbps transmission rate. However, mmWave links are easily blocked without line of sight. On the other hand, D2D communications have been proposed to support many content based applications, and need to share resources with users in HCNs to improve spectral reuse and enhance system capacity. Consequently, an efficient resource allocation scheme for D2D pairs among both mmWave and the cellular carrier band is needed. In this paper, we first formulate the problem of the resource allocation among mmWave and the cellular band for multiple D2D pairs from the view point of game theory. Then, with the characteristics of cellular and mmWave communications considered, we propose a coalition formation game to maximize the system sum rate in statistical average sense. We also theoretically prove that our proposed game converges to a Nash-stable equilibrium and further reaches the near-optimal solution with fast convergence rate. Through extensive simulations under various system parameters, we demonstrate the superior performance of our scheme in terms of the system sum rate compared with several other practical schemes.Comment: 13 pages, 12 figure

    Caching Eliminates the Wireless Bottleneck in Video Aware Wireless Networks

    Get PDF

    Dual-battery empowered green cellular networks

    Get PDF
    With awareness of the potential harmful effects to the environment and climate change, on-grid brown energy consumption of information and communications technology (ICT) has drawn much attention. Cellular base stations (BSs) are among the major energy guzzlers in ICT, and their contributions to the global carbon emissions increase sustainedly. It is essential to leverage green energy to power BSs to reduce their on-grid brown energy consumption. However, in order to furthest save on-grid brown energy and decrease the on-grid brown energy electricity expenses, most existing green energy related works only pursue to maximize the green energy utilization while compromising the services received by the mobile users. In reality, dissatisfaction of services may eventually lead to loss of market shares and profits of the network providers. In this research, a dual-battery enabled profit driven user association scheme is introduced to jointly consider the traffic delivery latency and green energy utilization to maximize the profits for the network providers in heterogeneous cellular networks. Since this profit driven user association optimization problem is NP-hard, some heuristics are presented to solve the problem with low computational complexity. Finally, the performance of the proposed algorithm is validated through extensive simulations. In addition, the Internet of Things (IoT) heralds a vision of future Internet where all physical things/devices are connected via a network to promote a heightened level of awareness about our world and dramatically improve our daily lives. Nonetheless, most wireless technologies utilizing unlicensed bands cannot provision ubiquitous and quality IoT services. In contrast, cellular networks support large-scale, quality of service guaranteed, and secured communications. However, tremendous proximal communications via local BSs will lead to severe traffic congestion and huge energy consumption in conventional cellular networks. Device-to-device (D2D) communications can potentially offload traffic from and reduce energy consumption of BSs. In order to realize the vision of a truly global IoT, a novel architecture, i.e., overlay-based green relay assisted D2D communications with dual batteries in heterogeneous cellular networks, is introduced. By optimally allocating the network resource, the introduced resource allocation method provisions the IoT services and minimizes the overall energy consumption of the pico relay BSs. By balancing the residual green energy among the pico relay BSs, the green energy utilization is maximized; this furthest saves the on-grid energy. Finally, the performance of the proposed architecture is validated through extensive simulations. Furthermore, the mobile devices serve the important roles in cellular networks and IoT. With the ongoing worldwide development of IoT, an unprecedented number of edge devices imperatively consume a substantial amount of energy. The overall IoT mobile edge devices have been predicted to be the leading energy guzzler in ICT by 2020. Therefore, a three-step green IoT architecture is proposed, i.e., ambient energy harvesting, green energy wireless transfer and green energy balancing, in this research. The latter step reinforces the former one to ensure the availability of green energy. The basic design principles for these three steps are laid out and discussed. In summary, based on the dual-battery architecture, this dissertation research proposes solutions for the three aspects, i.e., green cellular BSs, green D2D communications and green devices, to hopefully and eventually actualize green cellular access networks, as part of the ongoing efforts in greening our society and environment

    Computing on the Edge of the Network

    Get PDF
    Um Systeme der fünften Generation zellularer Kommunikationsnetze (5G) zu ermöglichen, sind Energie effiziente Architekturen erforderlich, die eine zuverlässige Serviceplattform für die Bereitstellung von 5G-Diensten und darüber hinaus bieten können. Device Enhanced Edge Computing ist eine Ableitung des Multi-Access Edge Computing (MEC), das Rechen- und Speicherressourcen direkt auf den Endgeräten bereitstellt. Die Bedeutung dieses Konzepts wird durch die steigenden Anforderungen von rechenintensiven Anwendungen mit extrem niedriger Latenzzeit belegt, die den MEC-Server allein und den drahtlosen Kanal überfordern. Diese Dissertation stellt ein Berechnungs-Auslagerungsframework mit Berücksichtigung von Energie, Mobilität und Anreizen in einem gerätegestützten MEC-System mit mehreren Benutzern und mehreren Aufgaben vor, das die gegenseitige Abhängigkeit der Aufgaben sowie die Latenzanforderungen der Anwendungen berücksichtigt.To enable fifth generation cellular communication network (5G) systems, energy efficient architectures are required that can provide a reliable service platform for the delivery of 5G services and beyond. Device Enhanced Edge Computing is a derivative of Multi-Access Edge Computing (MEC), which provides computing and storage resources directly on the end devices. The importance of this concept is evidenced by the increasing demands of ultra-low latency computationally intensive applications that overwhelm the MEC server alone and the wireless channel. This dissertation presents a computational offloading framework considering energy, mobility and incentives in a multi-user, multi-task device-based MEC system that takes into account task interdependence and application latency requirements
    corecore