384 research outputs found

    ARSH-FATI a Novel Metaheuristic for Cluster Head Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor network (WSN) consists of a large number of sensor nodes distributed over a certain target area. The WSN plays a vital role in surveillance, advanced healthcare, and commercialized industrial automation. Enhancing energy-efficiency of the WSN is a prime concern because higher energy consumption restricts the lifetime (LT) of the network. Clustering is a powerful technique widely adopted to increase LT of the network and reduce the transmission energy consumption. In this article (LT) we develop a novel ARSH-FATI-based Cluster Head Selection (ARSH-FATI-CHS) algorithm integrated with a heuristic called novel ranked-based clustering (NRC) to reduce the communication energy consumption of the sensor nodes while efficiently enhancing LT of the network. Unlike other population-based algorithms ARSH-FATI-CHS dynamically switches between exploration and exploitation of the search process during run-time to achieve higher performance trade-off and significantly increase LT of the network. ARSH-FATI-CHS considers the residual energy, communication distance parameters, and workload during cluster heads (CHs) selection. We simulate our proposed ARSH-FATI-CHS and generate various results to determine the performance of the WSN in terms of LT. We compare our results with state-of-the-art particle swarm optimization (PSO) and prove that ARSH-FATI-CHS approach improves the LT of the network by ∼25%

    Reconfigurable Antenna Systems: Platform implementation and low-power matters

    Get PDF
    Antennas are a necessary and often critical component of all wireless systems, of which they share the ever-increasing complexity and the challenges of present and emerging trends. 5G, massive low-orbit satellite architectures (e.g. OneWeb), industry 4.0, Internet of Things (IoT), satcom on-the-move, Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles, all call for highly flexible systems, and antenna reconfigurability is an enabling part of these advances. The terminal segment is particularly crucial in this sense, encompassing both very compact antennas or low-profile antennas, all with various adaptability/reconfigurability requirements. This thesis work has dealt with hardware implementation issues of Radio Frequency (RF) antenna reconfigurability, and in particular with low-power General Purpose Platforms (GPP); the work has encompassed Software Defined Radio (SDR) implementation, as well as embedded low-power platforms (in particular on STM32 Nucleo family of micro-controller). The hardware-software platform work has been complemented with design and fabrication of reconfigurable antennas in standard technology, and the resulting systems tested. The selected antenna technology was antenna array with continuously steerable beam, controlled by voltage-driven phase shifting circuits. Applications included notably Wireless Sensor Network (WSN) deployed in the Italian scientific mission in Antarctica, in a traffic-monitoring case study (EU H2020 project), and into an innovative Global Navigation Satellite Systems (GNSS) antenna concept (patent application submitted). The SDR implementation focused on a low-cost and low-power Software-defined radio open-source platform with IEEE 802.11 a/g/p wireless communication capability. In a second embodiment, the flexibility of the SDR paradigm has been traded off to avoid the power consumption associated to the relevant operating system. Application field of reconfigurable antenna is, however, not limited to a better management of the energy consumption. The analysis has also been extended to satellites positioning application. A novel beamforming method has presented demonstrating improvements in the quality of signals received from satellites. Regarding those who deal with positioning algorithms, this advancement help improving precision on the estimated position

    Power Optimization for Wireless Sensor Networks

    Get PDF

    Energy Management in RFID-Sensor Networks: Taxonomy and Challenges

    Get PDF
    Ubiquitous Computing is foreseen to play an important role for data production and network connectivity in the coming decades. The Internet of Things (IoT) research which has the capability to encapsulate identification potential and sensing capabilities, strives towards the objective of developing seamless, interoperable and securely integrated systems which can be achieved by connecting the Internet with computing devices. This gives way for the evolution of wireless energy harvesting and power transmission using computing devices. Radio Frequency (RF) based Energy Management (EM) has become the backbone for providing energy to wireless integrated systems. The two main techniques for EM in RFID Sensor Networks (RSN) are Energy Harvesting (EH) and Energy Transfer (ET). These techniques enable the dynamic energy level maintenance and optimisation as well as ensuring reliable communication which adheres to the goal of increased network performance and lifetime. In this paper, we present an overview of RSN, its types of integration and relative applications. We then provide the state-of-the-art EM techniques and strategies for RSN from August 2009 till date, thereby reviewing the existing EH and ET mechanisms designed for RSN. The taxonomy on various challenges for EM in RSN has also been articulated for open research directives

    Energy-efficient information inference in wireless sensor networks based on graphical modeling

    Get PDF
    This dissertation proposes a systematic approach, based on a probabilistic graphical model, to infer missing observations in wireless sensor networks (WSNs) for sustaining environmental monitoring. This enables us to effectively address two critical challenges in WSNs: (1) energy-efficient data gathering through planned communication disruptions resulting from energy-saving sleep cycles, and (2) sensor-node failure tolerance in harsh environments. In our approach, we develop a pairwise Markov Random Field (MRF) to model the spatial correlations in a sensor network. Our MRF model is first constructed through automatic learning from historical sensed data, by using Iterative Proportional Fitting (IPF). When the MRF model is constructed, Loopy Belief Propagation (LBP) is then employed to perform information inference to estimate the missing data given incomplete network observations. The proposed approach is then improved in terms of energy-efficiency and robustness from three aspects: model building, inference and parameter learning. The model and methods are empirically evaluated using multiple real-world sensor network data sets. The results demonstrate the merits of our proposed approaches
    • …
    corecore