917 research outputs found

    Socio-economic aware data forwarding in mobile sensing networks and systems

    Get PDF
    The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.Open Acces

    It's about THYME: On the design and implementation of a time-aware reactive storage system for pervasive edge computing environments

    Get PDF
    This work was partially supported by Fundacao para a Ciencia e a Tecnologia (FCT-MCTES) through project DeDuCe (PTDC/CCI-COM/32166/2017), NOVA LINCS UIDB/04516/2020, and grant SFRH/BD/99486/2014; and by the European Union through project LightKone (grant agreement n. 732505).Nowadays, smart mobile devices generate huge amounts of data in all sorts of gatherings. Much of that data has localized and ephemeral interest, but can be of great use if shared among co-located devices. However, mobile devices often experience poor connectivity, leading to availability issues if application storage and logic are fully delegated to a remote cloud infrastructure. In turn, the edge computing paradigm pushes computations and storage beyond the data center, closer to end-user devices where data is generated and consumed, enabling the execution of certain components of edge-enabled systems directly and cooperatively on edge devices. In this article, we address the challenge of supporting reliable and efficient data storage and dissemination among co-located wireless mobile devices without resorting to centralized services or network infrastructures. We propose THYME, a novel time-aware reactive data storage system for pervasive edge computing environments, that exploits synergies between the storage substrate and the publish/subscribe paradigm. We present the design of THYME and elaborate a three-fold evaluation, through an analytical study, and both simulation and real world experimentations, characterizing the scenarios best suited for its use. The evaluation shows that THYME allows the notification and retrieval of relevant data with low overhead and latency, and also with low energy consumption, proving to be a practical solution in a variety of situations.publishersversionpublishe
    corecore