8,078 research outputs found

    Energy-aware dynamic pricing model for cloud environments

    Get PDF
    Energy consumption is a critical operational cost for Cloud providers. However, as commercial providers typically use fixed pricing schemes that are oblivious about the energy costs of running virtual machines, clients are not charged according to their actual energy impact. Some works have proposed energy-aware cost models that are able to capture each client’s real energy usage. However, those models cannot be naturally used for pricing Cloud services, as the energy cost is calculated after the termination of the service, and it depends on decisions taken by the provider, such as the actual placement of the client’s virtual machines. For those reasons, a client cannot estimate in advance how much it will pay. This paper presents a pricing model for virtualized Cloud providers that dynamically derives the energy costs per allocation unit and per work unit for each time period. They account for the energy costs of the provider’s static and dynamic energy consumption by sharing out them according to the virtual resource allocation and the real resource usage of running virtual machines for the corresponding time period. Newly arrived clients during that period can use these costs as a baseline to calculate their expenses in advance as a function of the number of requested allocation and work units. Our results show that providers can get comparable revenue to traditional pricing schemes, while offering to the clients more proportional prices than fixed-price models.Peer ReviewedPostprint (author's final draft

    Toward sustainable data centers: a comprehensive energy management strategy

    Get PDF
    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data centers will be only possible if the problem is faced by means of a holistic approach that includes not only the aforementioned techniques but also intelligent and unifying solutions that enable a synergistic and energy-aware management of data centers. In this paper, we propose a comprehensive strategy to reduce the carbon footprint of data centers that uses the energy as a driver of their management procedures. In addition, we present a holistic management architecture for sustainable data centers that implements the aforementioned strategy, and we propose design guidelines to accomplish each step of the proposed strategy, referring to related achievements and enumerating the main challenges that must be still solved.Peer ReviewedPostprint (author's final draft
    • …
    corecore