863 research outputs found

    A Genetic Algorithm for Power-Aware Virtual Machine Allocation in Private Cloud

    Full text link
    Energy efficiency has become an important measurement of scheduling algorithm for private cloud. The challenge is trade-off between minimizing of energy consumption and satisfying Quality of Service (QoS) (e.g. performance or resource availability on time for reservation request). We consider resource needs in context of a private cloud system to provide resources for applications in teaching and researching. In which users request computing resources for laboratory classes at start times and non-interrupted duration in some hours in prior. Many previous works are based on migrating techniques to move online virtual machines (VMs) from low utilization hosts and turn these hosts off to reduce energy consumption. However, the techniques for migration of VMs could not use in our case. In this paper, a genetic algorithm for power-aware in scheduling of resource allocation (GAPA) has been proposed to solve the static virtual machine allocation problem (SVMAP). Due to limited resources (i.e. memory) for executing simulation, we created a workload that contains a sample of one-day timetable of lab hours in our university. We evaluate the GAPA and a baseline scheduling algorithm (BFD), which sorts list of virtual machines in start time (i.e. earliest start time first) and using best-fit decreasing (i.e. least increased power consumption) algorithm, for solving the same SVMAP. As a result, the GAPA algorithm obtains total energy consumption is lower than the baseline algorithm on simulated experimentation.Comment: 10 page

    Green-Aware Virtual Machine Migration Strategy in Sustainable Cloud Computing Environments

    Get PDF
    As cloud computing develops rapidly, the energy consumption of large-scale datacenters becomes unneglectable, and thus renewable energy is considered as the extra supply for building sustainable cloud infrastructures. In this chapter, we present a green-aware virtual machine (VM) migration strategy in such datacenters powered by sustainable energy sources, considering the power consumption of both IT functional devices and cooling devices. We define an overall optimization problem from an energy-aware point of view and try to solve it using statistical searching approaches. The purpose is to utilize green energy sufficiently while guaranteeing the performance of applications hosted by the datacenter. Evaluation experiments are conducted under realistic workload traces and solar energy generation data in order to validate the feasibility. Results show that the green energy utilization increases remarkably, and more overall revenues could be achieved

    Energy-aware scheduling in virtualized datacenters

    Get PDF
    The reduction of energy consumption in large-scale datacenters is being accomplished through an extensive use of virtualization, which enables the consolidation of multiple workloads in a smaller number of machines. Nevertheless, virtualization also incurs some additional overheads (e.g. virtual machine creation and migration) that can influence what is the best consolidated configuration, and thus, they must be taken into account. In this paper, we present a dynamic job scheduling policy for power-aware resource allocation in a virtualized datacenter. Our policy tries to consolidate workloads from separate machines into a smaller number of nodes, while fulfilling the amount of hardware resources needed to preserve the quality of service of each job. This allows turning off the spare servers, thus reducing the overall datacenter power consumption. As a novelty, this policy incorporates all the virtualization overheads in the decision process. In addition, our policy is prepared to consider other important parameters for a datacenter, such as reliability or dynamic SLA enforcement, in a synergistic way with power consumption. The introduced policy is evaluated comparing it against common policies in a simulated environment that accurately models HPC jobs execution in a virtualized datacenter including power consumption modeling and obtains a power consumption reduction of 15% with respect to typical policies.Peer ReviewedPostprint (published version

    A Review On Green Cloud Computing

    Get PDF
    The objective of green computing is to reap monetary growth and enhance the way the computing devices are used. In large data centers computational offloading is main problem due to increased demand for timely and response for real time application which lead to high energy consumption by data centers, so the aim of green computing is to find energy efficient solution which monopolize optimal utilization of the available resources. Green IT methods comprises of environmentally viable management, energy efficient computers and enhanced recycling procedures. By using different algorithm and energy efficient scheduling power consumption of virtual machine can be minimize, this paper provide an overview of different algorithms and techniques which are used to move towards the green computing

    Toward sustainable data centers: a comprehensive energy management strategy

    Get PDF
    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data centers will be only possible if the problem is faced by means of a holistic approach that includes not only the aforementioned techniques but also intelligent and unifying solutions that enable a synergistic and energy-aware management of data centers. In this paper, we propose a comprehensive strategy to reduce the carbon footprint of data centers that uses the energy as a driver of their management procedures. In addition, we present a holistic management architecture for sustainable data centers that implements the aforementioned strategy, and we propose design guidelines to accomplish each step of the proposed strategy, referring to related achievements and enumerating the main challenges that must be still solved.Peer ReviewedPostprint (author's final draft
    corecore