11,015 research outputs found

    Green Architectural Tactics for the Cloud

    Get PDF

    Green Architectural Tactics for the Cloud

    Get PDF
    Energy efficiency is a primary concern for the ICT sector. In particular, the widespread adoption of cloud computing technologies has drawn attention to the massive energy consumption of data centers. Although hardware constantly improves with respect to energy efficiency, this should also be a main concern forsoftware. In previous work we analyzed the literature and elicited a set of techniques for addressing energy efficiency in cloud-based software architectures. In this work we codified these techniques in the form of Green Architectural Tactics. These tactics will help architects extend their design reasoning towards energy efficiencyand to apply reusable solutions for greener software

    Architectural Tactics for Energy Efficiency: Review of the Literature and Research Roadmap

    Get PDF
    The energy consequences of software are rapidly growing: at the high-end, server farms consume enormous amounts of energy; at the low-end there is ever-increasing emphasis on battery-powered mobile and Internet-of-Things (IoT) devices with equally increasing complex usage scenarios. Conversely, there has been little attention to how software architectures can be designed for energy efficiency. While other software qualities—--think of performance or availability--—have been extensively studied, there is little research on how to reason about energy-consumption as a first-class citizen. We provide a basis for reasoning about design decisions for energy efficiency by deriving a kit of reusable architectural tactics derived from literature. We use the well-known open-search and snowballing methodologies to attain primary studies, and subsequently used thematic coding of such studies to identify recurrences and commonalities among the design strategies presented. The result of this process is a set of 10 architectural tactics for energy efficiency. These tactics provide a rational basis for architectural design and analysis for energy efficiency

    Empirical Validation of Cyber-Foraging Architectural Tactics for Surrogate Provisioning

    Get PDF
    Background Cyber-foraging architectural tactics are used to build mobile applications that leverage proximate, intermediate cloud surrogates for computation offload and data staging. Compared to direct access to cloud resources, the use of intermediate surrogates improves system qualities such as response time, energy efficiency, and resilience. However, the state-of-the-art mostly focuses on introducing new architectural tactics rather than quantitatively comparing the existing tactics, which can help software architects and software engineers with new insights on each tactic. Aim Our work aims at empirically evaluating the architectural tactics for surrogate provisioning, specifically with respect to resilience and energy efficiency. Method We follow a systematic experimentation framework to collect relevant data on Static Surrogate Provisioning and Dynamic Surrogate Provisioning tactics. Our experimentation approach can be reused for validation of other cyber-foraging tactics. We perform statistical analysis to support our hypotheses, as compared to baseline measurements with no cyber-foraging tactics deployed. Results Our findings show that Static Surrogate Provisioning tactics provide higher resilience than Dynamic Surrogate Provisioning tactics for runtime environmental changes. Both surrogate provisioning tactics perform with no significant difference with respect to their energy efficiency. We observe that the overhead of the runtime optimization algorithm is similar for both tactic types. Conclusions The presented quantitative evidence on the impact of different tactics empowers software architects and software engineers with the ability to make more conscious design decisions. This contribution, as a starting point, emphasizes the use of quantifiable metrics to make better-informed trade-offs between desired quality attributes. Our next step is to focus on the impact of runtime programmable infrastructure on the quality of cyber-foraging systems

    Energy-Efficient Software

    Get PDF
    The energy consumption of ICT is growing at an unprecedented pace. The main drivers for this growth are the widespread diffusion of mobile devices and the proliferation of datacenters, the most power-hungry IT facilities. In addition, it is predicted that the demand for ICT technologies and services will increase in the coming years. Finding solutions to decrease ICT energy footprint is and will be a top priority for researchers and professionals in the field. As a matter of fact, hardware technology has substantially improved throughout the years: modern ICT devices are definitely more energy efficient than their predecessors, in terms of performance per watt. However, as recent studies show, these improvements are not effectively reducing the growth rate of ICT energy consumption. This suggests that these devices are not used in an energy-efficient way. Hence, we have to look at software. Modern software applications are not designed and implemented with energy efficiency in mind. As hardware became more and more powerful (and cheaper), software developers were not concerned anymore with optimizing resource usage. Rather, they focused on providing additional features, adding layers of abstraction and complexity to their products. This ultimately resulted in bloated, slow software applications that waste hardware resources -- and consequently, energy. In this dissertation, the relationship between software behavior and hardware energy consumption is explored in detail. For this purpose, the abstraction levels of software are traversed upwards, from source code to architectural components. Empirical research methods and evidence-based software engineering approaches serve as a basis. First of all, this dissertation shows the relevance of software over energy consumption. Secondly, it gives examples of best practices and tactics that can be adopted to improve software energy efficiency, or design energy-efficient software from scratch. Finally, this knowledge is synthesized in a conceptual framework that gives the reader an overview of possible strategies for software energy efficiency, along with examples and suggestions for future research

    A tale of three systems : case studies on the application of architectural tactics for cyber-foraging

    Get PDF
    Cyber-foraging is a technique to enable mobile devices to extend their computing power and storage by offloading computation or data to more powerful servers located in the cloud or in single-hop proximity. In previous work, we developed a set of reusable architectural tactics for cyber-foraging systems. We define architectural tactics as design decisions that influence the achievement of a system quality. In this article we present the results of three case studies to validate the application of the tactics to promote their intended functional and non-functional requirements. The first two case studies focus on the identification of architectural tactics in existing cyber-foraging systems. The third case study focuses on the development of a new cyber-foraging system using the architectural tactics. The results of the case studies are an initial demonstration of the validity of the tactics, and the potential for taking a tactics-driven approach to fulfill functional and non-functional requirements for cyber-foraging systems. (C) 2019 Elsevier B.V. All rights reserved
    • 

    corecore