1,569 research outputs found

    Supervised Machine Learning Under Test-Time Resource Constraints: A Trade-off Between Accuracy and Cost

    Get PDF
    The past decade has witnessed how the field of machine learning has established itself as a necessary component in several multi-billion-dollar industries. The real-world industrial setting introduces an interesting new problem to machine learning research: computational resources must be budgeted and cost must be strictly accounted for during test-time. A typical problem is that if an application consumes x additional units of cost during test-time, but will improve accuracy by y percent, should the additional x resources be allocated? The core of this problem is a trade-off between accuracy and cost. In this thesis, we examine components of test-time cost, and develop different strategies to manage this trade-off. We first investigate test-time cost and discover that it typically consists of two parts: feature extraction cost and classifier evaluation cost. The former reflects the computational efforts of transforming data instances to feature vectors, and could be highly variable when features are heterogeneous. The latter reflects the effort of evaluating a classifier, which could be substantial, in particular nonparametric algorithms. We then propose three strategies to explicitly trade-off accuracy and the two components of test-time cost during classifier training. To budget the feature extraction cost, we first introduce two algorithms: GreedyMiser and Anytime Representation Learning (AFR). GreedyMiser employs a strategy that incorporates the extraction cost information during classifier training to explicitly minimize the test-time cost. AFR extends GreedyMiser to learn a cost-sensitive feature representation rather than a classifier, and turns traditional Support Vector Machines (SVM) into test- time cost-sensitive anytime classifiers. GreedyMiser and AFR are evaluated on two real-world data sets from two different application domains, and both achieve record performance. We then introduce Cost Sensitive Tree of Classifiers (CSTC) and Cost Sensitive Cascade of Classifiers (CSCC), which share a common strategy that trades-off the accuracy and the amortized test-time cost. CSTC introduces a tree structure and directs test inputs along different tree traversal paths, each is optimized for a specific sub-partition of the input space, extracting different, specialized subsets of features. CSCC extends CSTC and builds a linear cascade, instead of a tree, to cope with class-imbalanced binary classification tasks. Since both CSTC and CSCC extract different features for different inputs, the amortized test-time cost is greatly reduced while maintaining high accuracy. Both approaches out-perform the current state-of-the-art on real-world data sets. To trade-off accuracy and high classifier evaluation cost of nonparametric classifiers, we propose a model compression strategy and develop Compressed Vector Machines (CVM). CVM focuses on the nonparametric kernel Support Vector Machines (SVM), whose test-time evaluation cost is typically substantial when learned from large training sets. CVM is a post-processing algorithm which compresses the learned SVM model by reducing and optimizing support vectors. On several benchmark data sets, CVM maintains high test accuracy while reducing the test-time evaluation cost by several orders of magnitude

    Multilevel Weighted Support Vector Machine for Classification on Healthcare Data with Missing Values

    Full text link
    This work is motivated by the needs of predictive analytics on healthcare data as represented by Electronic Medical Records. Such data is invariably problematic: noisy, with missing entries, with imbalance in classes of interests, leading to serious bias in predictive modeling. Since standard data mining methods often produce poor performance measures, we argue for development of specialized techniques of data-preprocessing and classification. In this paper, we propose a new method to simultaneously classify large datasets and reduce the effects of missing values. It is based on a multilevel framework of the cost-sensitive SVM and the expected maximization imputation method for missing values, which relies on iterated regression analyses. We compare classification results of multilevel SVM-based algorithms on public benchmark datasets with imbalanced classes and missing values as well as real data in health applications, and show that our multilevel SVM-based method produces fast, and more accurate and robust classification results.Comment: arXiv admin note: substantial text overlap with arXiv:1503.0625

    Training Support Vector Machines Using Frank-Wolfe Optimization Methods

    Full text link
    Training a Support Vector Machine (SVM) requires the solution of a quadratic programming problem (QP) whose computational complexity becomes prohibitively expensive for large scale datasets. Traditional optimization methods cannot be directly applied in these cases, mainly due to memory restrictions. By adopting a slightly different objective function and under mild conditions on the kernel used within the model, efficient algorithms to train SVMs have been devised under the name of Core Vector Machines (CVMs). This framework exploits the equivalence of the resulting learning problem with the task of building a Minimal Enclosing Ball (MEB) problem in a feature space, where data is implicitly embedded by a kernel function. In this paper, we improve on the CVM approach by proposing two novel methods to build SVMs based on the Frank-Wolfe algorithm, recently revisited as a fast method to approximate the solution of a MEB problem. In contrast to CVMs, our algorithms do not require to compute the solutions of a sequence of increasingly complex QPs and are defined by using only analytic optimization steps. Experiments on a large collection of datasets show that our methods scale better than CVMs in most cases, sometimes at the price of a slightly lower accuracy. As CVMs, the proposed methods can be easily extended to machine learning problems other than binary classification. However, effective classifiers are also obtained using kernels which do not satisfy the condition required by CVMs and can thus be used for a wider set of problems

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201
    • …
    corecore