421 research outputs found

    Algoritmos de aproximação para problemas de alocação de instalações e outros problemas de cadeia de fornecimento

    Get PDF
    Orientadores: Flávio Keidi Miyazawa, Maxim SviridenkoTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O resumo poderá ser visualizado no texto completo da tese digitalAbstract: The abstract is available with the full electronic documentDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã

    Greedy vector quantization

    Get PDF
    We investigate the greedy version of the LpL^p-optimal vector quantization problem for an Rd\mathbb{R}^d-valued random vector X ⁣LpX\!\in L^p. We show the existence of a sequence (aN)N1(a_N)_{N\ge 1} such that aNa_N minimizes amin1iN1XaiXaLpa\mapsto\big \|\min_{1\le i\le N-1}|X-a_i|\wedge |X-a|\big\|_{L^p} (LpL^p-mean quantization error at level NN induced by (a1,,aN1,a)(a_1,\ldots,a_{N-1},a)). We show that this sequence produces LpL^p-rate optimal NN-tuples a(N)=(a1,,aN)a^{(N)}=(a_1,\ldots,a_{_N}) (i.e.i.e. the LpL^p-mean quantization error at level NN induced by a(N)a^{(N)} goes to 00 at rate N1dN^{-\frac 1d}). Greedy optimal sequences also satisfy, under natural additional assumptions, the distortion mismatch property: the NN-tuples a(N)a^{(N)} remain rate optimal with respect to the LqL^q-norms, pq<p+dp\le q <p+d. Finally, we propose optimization methods to compute greedy sequences, adapted from usual Lloyd's I and Competitive Learning Vector Quantization procedures, either in their deterministic (implementable when d=1d=1) or stochastic versions.Comment: 31 pages, 4 figures, few typos corrected (now an extended version of an eponym paper to appear in Journal of Approximation

    Approximation with Random Bases: Pro et Contra

    Full text link
    In this work we discuss the problem of selecting suitable approximators from families of parameterized elementary functions that are known to be dense in a Hilbert space of functions. We consider and analyze published procedures, both randomized and deterministic, for selecting elements from these families that have been shown to ensure the rate of convergence in L2L_2 norm of order O(1/N)O(1/N), where NN is the number of elements. We show that both randomized and deterministic procedures are successful if additional information about the families of functions to be approximated is provided. In the absence of such additional information one may observe exponential growth of the number of terms needed to approximate the function and/or extreme sensitivity of the outcome of the approximation to parameters. Implications of our analysis for applications of neural networks in modeling and control are illustrated with examples.Comment: arXiv admin note: text overlap with arXiv:0905.067

    Noisy, Greedy and Not so Greedy k-Means++

    Get PDF

    Constant Approximation for kk-Median and kk-Means with Outliers via Iterative Rounding

    Full text link
    In this paper, we present a new iterative rounding framework for many clustering problems. Using this, we obtain an (α1+ϵ7.081+ϵ)(\alpha_1 + \epsilon \leq 7.081 + \epsilon)-approximation algorithm for kk-median with outliers, greatly improving upon the large implicit constant approximation ratio of Chen [Chen, SODA 2018]. For kk-means with outliers, we give an (α2+ϵ53.002+ϵ)(\alpha_2+\epsilon \leq 53.002 + \epsilon)-approximation, which is the first O(1)O(1)-approximation for this problem. The iterative algorithm framework is very versatile; we show how it can be used to give α1\alpha_1- and (α1+ϵ)(\alpha_1 + \epsilon)-approximation algorithms for matroid and knapsack median problems respectively, improving upon the previous best approximations ratios of 88 [Swamy, ACM Trans. Algorithms] and 17.4617.46 [Byrka et al, ESA 2015]. The natural LP relaxation for the kk-median/kk-means with outliers problem has an unbounded integrality gap. In spite of this negative result, our iterative rounding framework shows that we can round an LP solution to an almost-integral solution of small cost, in which we have at most two fractionally open facilities. Thus, the LP integrality gap arises due to the gap between almost-integral and fully-integral solutions. Then, using a pre-processing procedure, we show how to convert an almost-integral solution to a fully-integral solution losing only a constant-factor in the approximation ratio. By further using a sparsification technique, the additive factor loss incurred by the conversion can be reduced to any ϵ>0\epsilon > 0
    corecore