2,164 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    A Trust Management Framework for Vehicular Ad Hoc Networks

    Get PDF
    The inception of Vehicular Ad Hoc Networks (VANETs) provides an opportunity for road users and public infrastructure to share information that improves the operation of roads and the driver experience. However, such systems can be vulnerable to malicious external entities and legitimate users. Trust management is used to address attacks from legitimate users in accordance with a user’s trust score. Trust models evaluate messages to assign rewards or punishments. This can be used to influence a driver’s future behaviour or, in extremis, block the driver. With receiver-side schemes, various methods are used to evaluate trust including, reputation computation, neighbour recommendations, and storing historical information. However, they incur overhead and add a delay when deciding whether to accept or reject messages. In this thesis, we propose a novel Tamper-Proof Device (TPD) based trust framework for managing trust of multiple drivers at the sender side vehicle that updates trust, stores, and protects information from malicious tampering. The TPD also regulates, rewards, and punishes each specific driver, as required. Furthermore, the trust score determines the classes of message that a driver can access. Dissemination of feedback is only required when there is an attack (conflicting information). A Road-Side Unit (RSU) rules on a dispute, using either the sum of products of trust and feedback or official vehicle data if available. These “untrue attacks” are resolved by an RSU using collaboration, and then providing a fixed amount of reward and punishment, as appropriate. Repeated attacks are addressed by incremental punishments and potentially driver access-blocking when conditions are met. The lack of sophistication in this fixed RSU assessment scheme is then addressed by a novel fuzzy logic-based RSU approach. This determines a fairer level of reward and punishment based on the severity of incident, driver past behaviour, and RSU confidence. The fuzzy RSU controller assesses judgements in such a way as to encourage drivers to improve their behaviour. Although any driver can lie in any situation, we believe that trustworthy drivers are more likely to remain so, and vice versa. We capture this behaviour in a Markov chain model for the sender and reporter driver behaviours where a driver’s truthfulness is influenced by their trust score and trust state. For each trust state, the driver’s likelihood of lying or honesty is set by a probability distribution which is different for each state. This framework is analysed in Veins using various classes of vehicles under different traffic conditions. Results confirm that the framework operates effectively in the presence of untrue and inconsistent attacks. The correct functioning is confirmed with the system appropriately classifying incidents when clarifier vehicles send truthful feedback. The framework is also evaluated against a centralized reputation scheme and the results demonstrate that it outperforms the reputation approach in terms of reduced communication overhead and shorter response time. Next, we perform a set of experiments to evaluate the performance of the fuzzy assessment in Veins. The fuzzy and fixed RSU assessment schemes are compared, and the results show that the fuzzy scheme provides better overall driver behaviour. The Markov chain driver behaviour model is also examined when changing the initial trust score of all drivers

    Optimization of Beyond 5G Network Slicing for Smart City Applications

    Get PDF
    Transitioning from the current fifth-generation (5G) wireless technology, the advent of beyond 5G (B5G) signifies a pivotal stride toward sixth generation (6G) communication technology. B5G, at its essence, harnesses end-to-end (E2E) network slicing (NS) technology, enabling the simultaneous accommodation of multiple logical networks with distinct performance requirements on a shared physical infrastructure. At the forefront of this implementation lies the critical process of network slice design, a phase central to the realization of efficient smart city networks. This thesis assumes a key role in the network slicing life cycle, emphasizing the analysis and formulation of optimal procedures for configuring, customizing, and allocating E2E network slices. The focus extends to catering to the unique demands of smart city applications, encompassing critical areas such as emergency response, smart buildings, and video surveillance. By addressing the intricacies of network slice design, the study navigates through the complexities of tailoring slices to meet specific application needs, thereby contributing to the seamless integration of diverse services within the smart city framework. Addressing the core challenge of NS, which involves the allocation of virtual networks on the physical topology with optimal resource allocation, the thesis introduces a dual integer linear programming (ILP) optimization problem. This problem is formulated to jointly minimize the embedding cost and latency. However, given the NP-hard nature of this ILP, finding an efficient alternative becomes a significant hurdle. In response, this thesis introduces a novel heuristic approach the matroid-based modified greedy breadth-first search (MGBFS) algorithm. This pioneering algorithm leverages matroid properties to navigate the process of virtual network embedding and resource allocation. By introducing this novel heuristic approach, the research aims to provide near-optimal solutions, overcoming the computational complexities associated with the dual integer linear programming problem. The proposed MGBFS algorithm not only addresses the connectivity, cost, and latency constraints but also outperforms the benchmark model delivering solutions remarkably close to optimal. This innovative approach represents a substantial advancement in the optimization of smart city applications, promising heightened connectivity, efficiency, and resource utilization within the evolving landscape of B5G-enabled communication technology

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Risk and threat mitigation techniques in internet of things (IoT) environments: a survey

    Get PDF
    Security in the Internet of Things (IoT) remains a predominant area of concern. Although several other surveys have been published on this topic in recent years, the broad spectrum that this area aims to cover, the rapid developments and the variety of concerns make it impossible to cover the topic adequately. This survey updates the state of the art covered in previous surveys and focuses on defences and mitigations against threats rather than on the threats alone, an area that is less extensively covered by other surveys. This survey has collated current research considering the dynamicity of the IoT environment, a topic missed in other surveys and warrants particular attention. To consider the IoT mobility, a life-cycle approach is adopted to the study of dynamic and mobile IoT environments and means of deploying defences against malicious actors aiming to compromise an IoT network and to evolve their attack laterally within it and from it. This survey takes a more comprehensive and detailed step by analysing a broad variety of methods for accomplishing each of the mitigation steps, presenting these uniquely by introducing a “defence-in-depth” approach that could significantly slow down the progress of an attack in the dynamic IoT environment. This survey sheds a light on leveraging redundancy as an inherent nature of multi-sensor IoT applications, to improve integrity and recovery. This study highlights the challenges of each mitigation step, emphasises novel perspectives, and reconnects the discussed mitigation steps to the ground principles they seek to implement

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF
    • …
    corecore