469 research outputs found

    Signal Space CoSaMP for Sparse Recovery with Redundant Dictionaries

    Get PDF
    Compressive sensing (CS) has recently emerged as a powerful framework for acquiring sparse signals. The bulk of the CS literature has focused on the case where the acquired signal has a sparse or compressible representation in an orthonormal basis. In practice, however, there are many signals that cannot be sparsely represented or approximated using an orthonormal basis, but that do have sparse representations in a redundant dictionary. Standard results in CS can sometimes be extended to handle this case provided that the dictionary is sufficiently incoherent or well-conditioned, but these approaches fail to address the case of a truly redundant or overcomplete dictionary. In this paper we describe a variant of the iterative recovery algorithm CoSaMP for this more challenging setting. We utilize the D-RIP, a condition on the sensing matrix analogous to the well-known restricted isometry property. In contrast to prior work, the method and analysis are "signal-focused"; that is, they are oriented around recovering the signal rather than its dictionary coefficients. Under the assumption that we have a near-optimal scheme for projecting vectors in signal space onto the model family of candidate sparse signals, we provide provable recovery guarantees. Developing a practical algorithm that can provably compute the required near-optimal projections remains a significant open problem, but we include simulation results using various heuristics that empirically exhibit superior performance to traditional recovery algorithms

    Greedy Signal Space Methods for Incoherence and Beyond

    Get PDF
    Compressive sampling (CoSa) has provided many methods for signal recovery of signals compressible with respect to an orthonormal basis. However, modern applications have sparked the emergence of approaches for signals not sparse in an orthonormal basis but in some arbitrary, perhaps highly overcomplete, dictionary. Recently, several signal-space greedy methods have been proposed to address signal recovery in this setting. However, such methods inherently rely on the existence of fast and accurate projections which allow one to identify the most relevant atoms in a dictionary for any given signal, up to a very strict accuracy. When the dictionary is highly overcomplete, no such projections are currently known; the requirements on such projections do not even hold for incoherent or well-behaved dictionaries. In this work, we provide an alternate analysis for signal space greedy methods which enforce assumptions on these projections which hold in several settings including those when the dictionary is incoherent or structurally coherent. These results align more closely with traditional results in the standard CoSa literature and improve upon previous work in the signal space setting
    • …
    corecore