28,907 research outputs found

    A Literature Survey of Cooperative Caching in Content Distribution Networks

    Full text link
    Content distribution networks (CDNs) which serve to deliver web objects (e.g., documents, applications, music and video, etc.) have seen tremendous growth since its emergence. To minimize the retrieving delay experienced by a user with a request for a web object, caching strategies are often applied - contents are replicated at edges of the network which is closer to the user such that the network distance between the user and the object is reduced. In this literature survey, evolution of caching is studied. A recent research paper [15] in the field of large-scale caching for CDN was chosen to be the anchor paper which serves as a guide to the topic. Research studies after and relevant to the anchor paper are also analyzed to better evaluate the statements and results of the anchor paper and more importantly, to obtain an unbiased view of the large scale collaborate caching systems as a whole.Comment: 5 pages, 5 figure

    Holistic Influence Maximization: Combining Scalability and Efficiency with Opinion-Aware Models

    Full text link
    The steady growth of graph data from social networks has resulted in wide-spread research in finding solutions to the influence maximization problem. In this paper, we propose a holistic solution to the influence maximization (IM) problem. (1) We introduce an opinion-cum-interaction (OI) model that closely mirrors the real-world scenarios. Under the OI model, we introduce a novel problem of Maximizing the Effective Opinion (MEO) of influenced users. We prove that the MEO problem is NP-hard and cannot be approximated within a constant ratio unless P=NP. (2) We propose a heuristic algorithm OSIM to efficiently solve the MEO problem. To better explain the OSIM heuristic, we first introduce EaSyIM - the opinion-oblivious version of OSIM, a scalable algorithm capable of running within practical compute times on commodity hardware. In addition to serving as a fundamental building block for OSIM, EaSyIM is capable of addressing the scalability aspect - memory consumption and running time, of the IM problem as well. Empirically, our algorithms are capable of maintaining the deviation in the spread always within 5% of the best known methods in the literature. In addition, our experiments show that both OSIM and EaSyIM are effective, efficient, scalable and significantly enhance the ability to analyze real datasets.Comment: ACM SIGMOD Conference 2016, 18 pages, 29 figure

    Self-organized Emergence of Navigability on Small-World Networks

    Full text link
    This paper mainly investigates why small-world networks are navigable and how to navigate small-world networks. We find that the navigability can naturally emerge from self-organization in the absence of prior knowledge about underlying reference frames of networks. Through a process of information exchange and accumulation on networks, a hidden metric space for navigation on networks is constructed. Navigation based on distances between vertices in the hidden metric space can efficiently deliver messages on small-world networks, in which long range connections play an important role. Numerical simulations further suggest that high cluster coefficient and low diameter are both necessary for navigability. These interesting results provide profound insights into scalable routing on the Internet due to its distributed and localized requirements.Comment: 3 figure

    Navigability of temporal networks in hyperbolic space

    Get PDF
    Information routing is one of the main tasks in many complex networks with a communication function. Maps produced by embedding the networks in hyperbolic space can assist this task enabling the implementation of efficient navigation strategies. However, only static maps have been considered so far, while navigation in more realistic situations, where the network structure may vary in time, remain largely unexplored. Here, we analyze the navigability of real networks by using greedy routing in hyperbolic space, where the nodes are subject to a stochastic activation-inactivation dynamics. We find that such dynamics enhances navigability with respect to the static case. Interestingly, there exists an optimal intermediate activation value, which ensures the best trade-off between the increase in the number of successful paths and a limited growth of their length. Contrary to expectations, the enhanced navigability is robust even when the most connected nodes inactivate with very high probability. Finally, our results indicate that some real networks are ultranavigable and remain highly navigable even if the network structure is extremely unsteady. These findings have important implications for the design and evaluation of efficient routing protocols that account for the temporal nature of real complex networks.Comment: 10 pages, 4 figures. Includes Supplemental Informatio

    Decentralized Greedy-Based Algorithm for Smart Energy Management in Plug-in Electric Vehicle Energy Distribution Systems

    Get PDF
    Variations in electricity tariffs arising due to stochastic demand loads on the power grids have stimulated research in finding optimal charging/discharging scheduling solutions for electric vehicles (EVs). Most of the current EV scheduling solutions are either centralized, which suffer from low reliability and high complexity, while existing decentralized solutions do not facilitate the efficient scheduling of on-move EVs in large-scale networks considering a smart energy distribution system. Motivated by smart cities applications, we consider in this paper the optimal scheduling of EVs in a geographically large-scale smart energy distribution system where EVs have the flexibility of charging/discharging at spatially-deployed smart charging stations (CSs) operated by individual aggregators. In such a scenario, we define the social welfare maximization problem as the total profit of both supply and demand sides in the form of a mixed integer non-linear programming (MINLP) model. Due to the intractability, we then propose an online decentralized algorithm with low complexity which utilizes effective heuristics to forward each EV to the most profitable CS in a smart manner. Results of simulations on the IEEE 37 bus distribution network verify that the proposed algorithm improves the social welfare by about 30% on average with respect to an alternative scheduling strategy under the equal participation of EVs in charging and discharging operations. Considering the best-case performance where only EV profit maximization is concerned, our solution also achieves upto 20% improvement in flatting the final electricity load. Furthermore, the results reveal the existence of an optimal number of CSs and an optimal vehicle-to-grid penetration threshold for which the overall profit can be maximized. Our findings serve as guidelines for V2G system designers in smart city scenarios to plan a cost-effective strategy for large-scale EVs distributed energy management
    corecore