6,754 research outputs found

    Greedy Maximization Framework for Graph-based Influence Functions

    Full text link
    The study of graph-based submodular maximization problems was initiated in a seminal work of Kempe, Kleinberg, and Tardos (2003): An {\em influence} function of subsets of nodes is defined by the graph structure and the aim is to find subsets of seed nodes with (approximately) optimal tradeoff of size and influence. Applications include viral marketing, monitoring, and active learning of node labels. This powerful formulation was studied for (generalized) {\em coverage} functions, where the influence of a seed set on a node is the maximum utility of a seed item to the node, and for pairwise {\em utility} based on reachability, distances, or reverse ranks. We define a rich class of influence functions which unifies and extends previous work beyond coverage functions and specific utility functions. We present a meta-algorithm for approximate greedy maximization with strong approximation quality guarantees and worst-case near-linear computation for all functions in our class. Our meta-algorithm generalizes a recent design by Cohen et al (2014) that was specific for distance-based coverage functions.Comment: 8 pages, 1 figur

    Online Influence Maximization in Non-Stationary Social Networks

    Full text link
    Social networks have been popular platforms for information propagation. An important use case is viral marketing: given a promotion budget, an advertiser can choose some influential users as the seed set and provide them free or discounted sample products; in this way, the advertiser hopes to increase the popularity of the product in the users' friend circles by the world-of-mouth effect, and thus maximizes the number of users that information of the production can reach. There has been a body of literature studying the influence maximization problem. Nevertheless, the existing studies mostly investigate the problem on a one-off basis, assuming fixed known influence probabilities among users, or the knowledge of the exact social network topology. In practice, the social network topology and the influence probabilities are typically unknown to the advertiser, which can be varying over time, i.e., in cases of newly established, strengthened or weakened social ties. In this paper, we focus on a dynamic non-stationary social network and design a randomized algorithm, RSB, based on multi-armed bandit optimization, to maximize influence propagation over time. The algorithm produces a sequence of online decisions and calibrates its explore-exploit strategy utilizing outcomes of previous decisions. It is rigorously proven to achieve an upper-bounded regret in reward and applicable to large-scale social networks. Practical effectiveness of the algorithm is evaluated using both synthetic and real-world datasets, which demonstrates that our algorithm outperforms previous stationary methods under non-stationary conditions.Comment: 10 pages. To appear in IEEE/ACM IWQoS 2016. Full versio

    Towards Profit Maximization for Online Social Network Providers

    Full text link
    Online Social Networks (OSNs) attract billions of users to share information and communicate where viral marketing has emerged as a new way to promote the sales of products. An OSN provider is often hired by an advertiser to conduct viral marketing campaigns. The OSN provider generates revenue from the commission paid by the advertiser which is determined by the spread of its product information. Meanwhile, to propagate influence, the activities performed by users such as viewing video ads normally induce diffusion cost to the OSN provider. In this paper, we aim to find a seed set to optimize a new profit metric that combines the benefit of influence spread with the cost of influence propagation for the OSN provider. Under many diffusion models, our profit metric is the difference between two submodular functions which is challenging to optimize as it is neither submodular nor monotone. We design a general two-phase framework to select seeds for profit maximization and develop several bounds to measure the quality of the seed set constructed. Experimental results with real OSN datasets show that our approach can achieve high approximation guarantees and significantly outperform the baseline algorithms, including state-of-the-art influence maximization algorithms.Comment: INFOCOM 2018 (Full version), 12 page
    • …
    corecore