32,443 research outputs found

    Nonlinear Basis Pursuit

    Full text link
    In compressive sensing, the basis pursuit algorithm aims to find the sparsest solution to an underdetermined linear equation system. In this paper, we generalize basis pursuit to finding the sparsest solution to higher order nonlinear systems of equations, called nonlinear basis pursuit. In contrast to the existing nonlinear compressive sensing methods, the new algorithm that solves the nonlinear basis pursuit problem is convex and not greedy. The novel algorithm enables the compressive sensing approach to be used for a broader range of applications where there are nonlinear relationships between the measurements and the unknowns

    Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit

    Get PDF
    This paper demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with mm nonzero entries in dimension dd given rmO(mlnd) {rm O}(m ln d) random linear measurements of that signal. This is a massive improvement over previous results, which require rmO(m2){rm O}(m^{2}) measurements. The new results for OMP are comparable with recent results for another approach called Basis Pursuit (BP). In some settings, the OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal recovery problems

    A* Orthogonal Matching Pursuit: Best-First Search for Compressed Sensing Signal Recovery

    Full text link
    Compressed sensing is a developing field aiming at reconstruction of sparse signals acquired in reduced dimensions, which make the recovery process under-determined. The required solution is the one with minimum â„“0\ell_0 norm due to sparsity, however it is not practical to solve the â„“0\ell_0 minimization problem. Commonly used techniques include â„“1\ell_1 minimization, such as Basis Pursuit (BP) and greedy pursuit algorithms such as Orthogonal Matching Pursuit (OMP) and Subspace Pursuit (SP). This manuscript proposes a novel semi-greedy recovery approach, namely A* Orthogonal Matching Pursuit (A*OMP). A*OMP performs A* search to look for the sparsest solution on a tree whose paths grow similar to the Orthogonal Matching Pursuit (OMP) algorithm. Paths on the tree are evaluated according to a cost function, which should compensate for different path lengths. For this purpose, three different auxiliary structures are defined, including novel dynamic ones. A*OMP also incorporates pruning techniques which enable practical applications of the algorithm. Moreover, the adjustable search parameters provide means for a complexity-accuracy trade-off. We demonstrate the reconstruction ability of the proposed scheme on both synthetically generated data and images using Gaussian and Bernoulli observation matrices, where A*OMP yields less reconstruction error and higher exact recovery frequency than BP, OMP and SP. Results also indicate that novel dynamic cost functions provide improved results as compared to a conventional choice.Comment: accepted for publication in Digital Signal Processin

    Topics in Compressed Sensing

    Get PDF
    Compressed sensing has a wide range of applications that include error correction, imaging, radar and many more. Given a sparse signal in a high dimensional space, one wishes to reconstruct that signal accurately and efficiently from a number of linear measurements much less than its actual dimension. Although in theory it is clear that this is possible, the difficulty lies in the construction of algorithms that perform the recovery efficiently, as well as determining which kind of linear measurements allow for the reconstruction. There have been two distinct major approaches to sparse recovery that each present different benefits and shortcomings. The first, L1-minimization methods such as Basis Pursuit, use a linear optimization problem to recover the signal. This method provides strong guarantees and stability, but relies on Linear Programming, whose methods do not yet have strong polynomially bounded runtimes. The second approach uses greedy methods that compute the support of the signal iteratively. These methods are usually much faster than Basis Pursuit, but until recently had not been able to provide the same guarantees. This gap between the two approaches was bridged when we developed and analyzed the greedy algorithm Regularized Orthogonal Matching Pursuit (ROMP). ROMP provides similar guarantees to Basis Pursuit as well as the speed of a greedy algorithm. Our more recent algorithm Compressive Sampling Matching Pursuit (CoSaMP) improves upon these guarantees, and is optimal in every important aspect

    Mixed Operators in Compressed Sensing

    Get PDF
    Applications of compressed sensing motivate the possibility of using different operators to encode and decode a signal of interest. Since it is clear that the operators cannot be too different, we can view the discrepancy between the two matrices as a perturbation. The stability of L1-minimization and greedy algorithms to recover the signal in the presence of additive noise is by now well-known. Recently however, work has been done to analyze these methods with noise in the measurement matrix, which generates a multiplicative noise term. This new framework of generalized perturbations (i.e., both additive and multiplicative noise) extends the prior work on stable signal recovery from incomplete and inaccurate measurements of Candes, Romberg and Tao using Basis Pursuit (BP), and of Needell and Tropp using Compressive Sampling Matching Pursuit (CoSaMP). We show, under reasonable assumptions, that the stability of the reconstructed signal by both BP and CoSaMP is limited by the noise level in the observation. Our analysis extends easily to arbitrary greedy methods.Comment: CISS 2010 (44th Annual Conference on Information Sciences and Systems

    Analysis and Synthesis Prior Greedy Algorithms for Non-linear Sparse Recovery

    Full text link
    In this work we address the problem of recovering sparse solutions to non linear inverse problems. We look at two variants of the basic problem, the synthesis prior problem when the solution is sparse and the analysis prior problem where the solution is cosparse in some linear basis. For the first problem, we propose non linear variants of the Orthogonal Matching Pursuit (OMP) and CoSamp algorithms; for the second problem we propose a non linear variant of the Greedy Analysis Pursuit (GAP) algorithm. We empirically test the success rates of our algorithms on exponential and logarithmic functions. We model speckle denoising as a non linear sparse recovery problem and apply our technique to solve it. Results show that our method outperforms state of the art methods in ultrasound speckle denoising

    Greed is good: algorithmic results for sparse approximation

    Get PDF
    This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho's basis pursuit (BP) paradigm can recover the optimal representation of an exactly sparse signal. It leverages this theory to show that both OMP and BP succeed for every sparse input signal from a wide class of dictionaries. These quasi-incoherent dictionaries offer a natural generalization of incoherent dictionaries, and the cumulative coherence function is introduced to quantify the level of incoherence. This analysis unifies all the recent results on BP and extends them to OMP. Furthermore, the paper develops a sufficient condition under which OMP can identify atoms from an optimal approximation of a nonsparse signal. From there, it argues that OMP is an approximation algorithm for the sparse problem over a quasi-incoherent dictionary. That is, for every input signal, OMP calculates a sparse approximant whose error is only a small factor worse than the minimal error that can be attained with the same number of terms
    • …
    corecore