55,230 research outputs found

    Greedy Algorithms for Optimal Distribution Approximation

    Full text link
    The approximation of a discrete probability distribution t\mathbf{t} by an MM-type distribution p\mathbf{p} is considered. The approximation error is measured by the informational divergence D(t∥p)\mathbb{D}(\mathbf{t}\Vert\mathbf{p}), which is an appropriate measure, e.g., in the context of data compression. Properties of the optimal approximation are derived and bounds on the approximation error are presented, which are asymptotically tight. It is shown that MM-type approximations that minimize either D(t∥p)\mathbb{D}(\mathbf{t}\Vert\mathbf{p}), or D(p∥t)\mathbb{D}(\mathbf{p}\Vert\mathbf{t}), or the variational distance ∥p−t∥1\Vert\mathbf{p}-\mathbf{t}\Vert_1 can all be found by using specific instances of the same general greedy algorithm.Comment: 5 page

    Greedy MAXCUT Algorithms and their Information Content

    Full text link
    MAXCUT defines a classical NP-hard problem for graph partitioning and it serves as a typical case of the symmetric non-monotone Unconstrained Submodular Maximization (USM) problem. Applications of MAXCUT are abundant in machine learning, computer vision and statistical physics. Greedy algorithms to approximately solve MAXCUT rely on greedy vertex labelling or on an edge contraction strategy. These algorithms have been studied by measuring their approximation ratios in the worst case setting but very little is known to characterize their robustness to noise contaminations of the input data in the average case. Adapting the framework of Approximation Set Coding, we present a method to exactly measure the cardinality of the algorithmic approximation sets of five greedy MAXCUT algorithms. Their information contents are explored for graph instances generated by two different noise models: the edge reversal model and Gaussian edge weights model. The results provide insights into the robustness of different greedy heuristics and techniques for MAXCUT, which can be used for algorithm design of general USM problems.Comment: This is a longer version of the paper published in 2015 IEEE Information Theory Workshop (ITW

    Collapsing Superstring Conjecture

    Get PDF
    In the Shortest Common Superstring (SCS) problem, one is given a collection of strings, and needs to find a shortest string containing each of them as a substring. SCS admits 2 11/23-approximation in polynomial time (Mucha, SODA\u2713). While this algorithm and its analysis are technically involved, the 30 years old Greedy Conjecture claims that the trivial and efficient Greedy Algorithm gives a 2-approximation for SCS. We develop a graph-theoretic framework for studying approximation algorithms for SCS. The framework is reminiscent of the classical 2-approximation for Traveling Salesman: take two copies of an optimal solution, apply a trivial edge-collapsing procedure, and get an approximate solution. In this framework, we observe two surprising properties of SCS solutions, and we conjecture that they hold for all input instances. The first conjecture, that we call Collapsing Superstring conjecture, claims that there is an elementary way to transform any solution repeated twice into the same graph G. This conjecture would give an elementary 2-approximate algorithm for SCS. The second conjecture claims that not only the resulting graph G is the same for all solutions, but that G can be computed by an elementary greedy procedure called Greedy Hierarchical Algorithm. While the second conjecture clearly implies the first one, perhaps surprisingly we prove their equivalence. We support these equivalent conjectures by giving a proof for the special case where all input strings have length at most 3 (which until recently had been the only case where the Greedy Conjecture was proven). We also tested our conjectures on millions of instances of SCS. We prove that the standard Greedy Conjecture implies Greedy Hierarchical Conjecture, while the latter is sufficient for an efficient greedy 2-approximate approximation of SCS. Except for its (conjectured) good approximation ratio, the Greedy Hierarchical Algorithm provably finds a 3.5-approximation, and finds exact solutions for the special cases where we know polynomial time (not greedy) exact algorithms: (1) when the input strings form a spectrum of a string (2) when all input strings have length at most 2

    Approximation Bounds For Minimum Degree Matching

    Full text link
    We consider the MINGREEDY strategy for Maximum Cardinality Matching. MINGREEDY repeatedly selects an edge incident with a node of minimum degree. For graphs of degree at most Δ\Delta we show that MINGREEDY achieves approximation ratio at least Δ−12Δ−3 \frac{\Delta-1}{2\Delta-3} in the worst case and that this performance is optimal among adaptive priority algorithms in the vertex model, which include many prominent greedy matching heuristics. Even when considering expected approximation ratios of randomized greedy strategies, no better worst case bounds are known for graphs of small degrees.Comment: % CHANGELOG % rev 1 2014-12-02 % - Show that the class APV contains many prominent greedy matching algorithms. % - Adapt inapproximability bound for APV-algorithms to a priori knowledge on |V|. % rev 2 2015-10-31 % - improve performance guarantee of MINGREEDY to be tigh

    A Novel Genetic Algorithm using Helper Objectives for the 0-1 Knapsack Problem

    Full text link
    The 0-1 knapsack problem is a well-known combinatorial optimisation problem. Approximation algorithms have been designed for solving it and they return provably good solutions within polynomial time. On the other hand, genetic algorithms are well suited for solving the knapsack problem and they find reasonably good solutions quickly. A naturally arising question is whether genetic algorithms are able to find solutions as good as approximation algorithms do. This paper presents a novel multi-objective optimisation genetic algorithm for solving the 0-1 knapsack problem. Experiment results show that the new algorithm outperforms its rivals, the greedy algorithm, mixed strategy genetic algorithm, and greedy algorithm + mixed strategy genetic algorithm
    • …
    corecore