259 research outputs found

    Energy-aware Dual-path Geographic Routing to Bypass Routing Holes in Wireless Sensor Networks

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.Geographic routing has been considered as an attractive approach for resource-constrained wireless sensor networks (WSNs) since it exploits local location information instead of global topology information to route data. However, this routing approach often suffers from the routing hole (i.e., an area free of nodes in the direction closer to destination) in various environments such as buildings and obstacles during data delivery, resulting in route failure. Currently, existing geographic routing protocols tend to walk along only one side of the routing holes to recover the route, thus achieving suboptimal network performance such as longer delivery delay and lower delivery ratio. Furthermore, these protocols cannot guarantee that all packets are delivered in an energy-efficient manner once encountering routing holes. In this paper, we focus on addressing these issues and propose an energy-aware dual-path geographic routing (EDGR) protocol for better route recovery from routing holes. EDGR adaptively utilizes the location information, residual energy, and the characteristics of energy consumption to make routing decisions, and dynamically exploits two node-disjoint anchor lists, passing through two sides of the routing holes, to shift routing path for load balance. Moreover, we extend EDGR into three-dimensional (3D) sensor networks to provide energy-aware routing for routing hole detour. Simulation results demonstrate that EDGR exhibits higher energy efficiency, and has moderate performance improvements on network lifetime, packet delivery ratio, and delivery delay, compared to other geographic routing protocols in WSNs over a variety of communication scenarios passing through routing holes. The proposed EDGR is much applicable to resource-constrained WSNs with routing holes.This work has been partially supported by the National Natural Science Foundation of China (No. 61402343, No. 61672318, No. U1504614, No. 61631013, and No. 61303241), the National Key Research and Development Program (No. 2016YFB1000102), the Natural Science Foundation of Suzhou/Jiangsu Province (No. BK20160385), the EU FP7 QUICK Project (No. PIRSESGA- 2013-612652), and the projects of Tsinghua National Laboratory for Information Science and Technology (TNList)

    Energy-efficient routing in the proximity of a complicated hole in wireless sensor networks

    Get PDF
    AbstractA quest for geographic routing schemes of wireless sensor networks when sensor nodes are deployed in areas with obstacles has resulted in numerous ingenious proposals and techniques. However, there is a lack of solutions for complicated cases wherein the source or the sink nodes are located close to a specific hole, especially in cavern-like regions of large complex-shaped holes. In this paper, we propose a geographic routing scheme to deal with the existence of complicated-shape holes in an effective manner. Our proposed routing scheme achieves routes around holes with the (1+ϵ\epsilon ϵ )-stretch. Experimental results show that our routing scheme yields the highest load balancing and the most extended network lifetime compared to other well-known routing algorithms as well

    Hole Detection and Shape-Free Representation and Double Landmarks Based Geographic Routing in Wireless Sensor Networks

    Get PDF
    In wireless sensor networks, an important issue of Geographic Routing is local minimum problem, which is caused by hole that blocks the greedy forwarding process. To avoid the long detour path, recent research focuses on detecting the hole in advance, then the nodes located on the boundary of the hole advertise the hole information to the nodes near the hole

    TRUST-BASED DEFENSE AGAINST INSIDER PACKET DROP ATTACKS IN WIRELESS SENSOR NETWORKS

    Get PDF
    In most wireless sensor networks (WSNs), sensor nodes generate data packets and send them to the base station (BS) by multi-hop routing paths because of their limited energy and transmission range. The insider packet drop attacks refer to a set of attacks where compromised nodes intentionally drop packets. It is challenging to accurately detect such attacks because packets may also be dropped due to collision, congestion, or other network problems. Trust mechanism is a promising approach to identify inside packet drop attackers. In such an approach, each node will monitor its neighbor's packet forwarding behavior and use this observation to measure the trustworthiness of its neighbors. Once a neighbor's trust value falls below a threshold, it will be considered as an attacker by the monitoring node and excluded from the routing paths so further damage to the network will not be made. In this dissertation, we analyze the limitation of the state-of-the-art trust mechanisms and propose several enhancement techniques to better defend against insider packet drop attacks in WSNs. First, we observe that inside attackers can easily defeat the current trust mechanisms and even if they are caught, normally a lot of damage has already been made to the network. We believe this is caused by current trust models' inefficiency in distinguishing attacking behaviors and normal network transmission failures. We demonstrate that the phenomenon of consecutive packet drops is one fundamental difference between attackers and good sensor nodes and build a hybrid trust model based on it to improve the detection speed and accuracy of current trust models. Second, trust mechanisms give false alarms when they mis-categorize good nodes as attackers. Aggressive mechanisms like our hybrid approach designed to catch attackers as early as possible normally have high false alarm rate. Removing these nodes from routing paths may significantly reduce the performance of the network. We propose a novel false alarm detection and recovery mechanism that can recover the falsely detected good nodes. Next, we show that more intelligent packet drop attackers can launch advanced attacks without being detected by introducing a selective forwarding-based denial-of-service attack that drops only packets from specific victim nodes. We develop effective detection and prevention methods against such attack. We have implemented all the methods we have proposed and conducted extensive simulations with the OPNET network simulator to validate their effectiveness

    Position-based routing and MAC protocols for wireless ad-hoc networks

    Get PDF
    This thesis presents the Forecasting Routing Technique (FORTEL), a routing protocol for Mobile Ad-Hoc Networks (MANETs) based on the nodes' Location Information. FORTEL stores the nodes' location information in the Location Table (LT) in order to construct routes between the source and the destination nodes. FORTEL follows the source routing strategy, which has rarely been applied in position-based routing. According to the source routing strategy, the end-to-end route is attached to the packet, therefore, the processing cost, in regards to the intermediate nodes that simply relay the packet according to route, is minimized. FORTEL's key mechanisms include: first, the location update scheme, employed to keep the LT entries up-to-date with the network topology. Besides the mobility variation and the constant rate location update schemes applied, a window location update scheme is presented to increase the LT's information accuracy. Second, the switching mechanism, between "Hello" message and location update employed, to reduce the protocol's routing overhead. Third and most important is the route computation mechanism, which is integrated with a topology forecasting technique to construct up-to-date routes between the communication peers, aiming to achieve high delivery rate and increase the protocol robustness against the nodes' movement. FORTEL demonstrates higher performance as compared to other MANET's routing protocols, and it delivers up to 20% more packets than AODV and up to 60 % more than DSR and OLSR, while maintaining low levels of routing overhead and network delay at the same time. The effectiveness of the window update scheme is also discussed, and it proves to increase FORTEL's delivery rate by up to 30% as compared to the other update schemes. A common and frequently occurring phenomenon, in wireless networks, is the Hidden Terminal problem that significantly impacts the communication performance and the efficiency of the routing and MAC protocols. Beaconless routing approach in MANETs, which delivers data packets without prior knowledge of any sort `of information, suffers from packet duplication caused by the hidden nodes during the contention process. Moreover, the throughput of the IEEE MAC protocol decreases dramatically when the hidden terminal problem occurs. RTS/CTS mechanism fails to eliminate the problem and can further degrade the network's performance by introducing additional overhead. To tackle these challenges, this thesis presents two techniques, the Sender Suppression Algorithm and the Location-Aided MAC, where both rely on the nodes' position to eliminate packet duplication in the beaconless routing and improve the performance of the 802.11 MAC respectively. Both schemes are based on the concept of grouping the nodes into zones and assign different time delay to each one. According to the Sender Suppression Algorithm, the sender's forwarding area is divided into three zones, therefore, the local timer, set to define the time that the receiver has to wait before responding to the sender's transmission, is added to the assigned zone delay. Following the first response, the sender interferes and suppresses the receivers with active timer of. On the other hand, the Location-Aided MAC, essentially a hybrid MAC, combines the concepts of time division and carrier sensing. The radio range of the wireless receiver is partitioned into four zones with different zone delays assigned to each zone. Channel access within the zone is purely controlled by CSMA/CA protocol, while it is time-based amongst zones. The effectiveness of the proposed techniques is demonstrated through simulation tests. Location-Aided MAC considerably improves the network's throughput compared to CSMA/CA and RTS/CTS. However, remarkable results come when the proposed technique and the RTS/CTS are combined, which achieves up to 20% more throughput as compared to the standalone RTS/CTS. Finally, the thesis presents a novel link lifetime estimation method for greedy forwarding to compute the link duration between two nodes. Based on a newly introduced Stability-Aware Greedy (SAG) scheme, the proposed method incorporates the destination node in the computation process and thus has a significant advantage over the conventional method, which only considers the information of the nodes composing the link.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore