1,291 research outputs found

    Recent Advances in Morphological Cell Image Analysis

    Get PDF
    This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed

    Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology

    Get PDF
    Diffusion-weighted magnetic resonance imaging (DWI) provides functional information and can be used for the detection and characterization of pathologic processes, including malignant tumors. The recently introduced concept of “diffusion-weighted whole-body imaging with background body signal suppression” (DWIBS) now allows acquisition of volumetric diffusion-weighted images of the entire body. This new concept has unique features different from conventional DWI and may play an important role in whole-body oncological imaging. This review describes and illustrates the basics of DWI, the features of DWIBS, and its potential applications in oncology

    Diseases of the Abdomen and Pelvis 2018-2021: Diagnostic Imaging - IDKD Book

    Get PDF
    Gastrointestinal disease; PET/CT; Radiology; X-ray; IDKD; Davo

    Morphological Features of Dysplastic Progression in Epithelium: Quantification of Cytological, Microendoscopic, and Second Harmonic Generation Images

    Get PDF
    Advances in imaging technology have led to a variety of available clinical and investigational systems. In this collection of studies, we tested the relevance of morphological image feature quantification on several imaging systems and epithelial tissues. Quantification carries the benefit of creating numerical baselines and thresholds of healthy and abnormal tissues, to potentially aid clinicians in determining a diagnosis, as well as providing researchers with standardized, unbiased results for future dissemination and comparison. Morphological image features in proflavine stained oral cells were compared qualitatively to traditional Giemsa stained cells, and then we quantified the nuclear to cytoplasm ratio. We determined that quantification of proflavine stained cells matched our hypothesis, as the nuclei in oral carcinoma cells were significantly larger than healthy oral cells. Proflavine has been used in conjunction with translational fluorescence microendoscopy of the gastrointestinal tract, and we demonstrated the ability of our custom algorithm to accurately (up to 85% sensitivity) extract colorectal crypt area and circularity data, which could minimize the burden of training on clinicians. In addition, we proposed fluorescein as an alternative fluorescent dye, providing comparable crypt area and circularity information. In order to investigate the morphological changes of crypts via the supporting collagen structures, we adapted our quantification algorithm to analyze crypt area, circularity, and an additional shape parameter in second harmonic generation images of label-free freshly resected murine epithelium. Murine models of colorectal cancer (CRC) were imaged at early and late stages of tumor progression, and we noted significant differences between the Control groups and the late cancer stages, with some differences between early and late stages of CRC progression

    Ultrasound Imaging

    Get PDF
    This book provides an overview of ultrafast ultrasound imaging, 3D high-quality ultrasonic imaging, correction of phase aberrations in medical ultrasound images, etc. Several interesting medical and clinical applications areas are also discussed in the book, like the use of three dimensional ultrasound imaging in evaluation of Asherman's syndrome, the role of 3D ultrasound in assessment of endometrial receptivity and follicular vascularity to predict the quality oocyte, ultrasound imaging in vascular diseases and the fetal palate, clinical application of ultrasound molecular imaging, Doppler abdominal ultrasound in small animals and so on

    Ultrasound Imaging

    Get PDF
    Ultrasound Imaging - Current Topics presents complex and current topics in ultrasound imaging in a simplified format. It is easy to read and exemplifies the range of experiences of each contributing author. Chapters address such topics as anatomy and dimensional variations, pediatric gastrointestinal emergencies, musculoskeletal and nerve imaging as well as molecular sonography. The book is a useful resource for researchers, students, clinicians, and sonographers looking for additional information on ultrasound imaging beyond the basics

    Computer Image Analysis Based Quantification of Comparative Ihc Levels of P53 And Signaling Associated With the Dna Damage Repair Pathway Discriminates Between Inflammatory And Dysplastic Cellular Atypia

    Get PDF
    Epithelial oncogenesis is believed to be generally associated with the accumulation over time of an increasing number of mitotic errors until a threshold number of mutations required for the initiation of cancer is achieved. Preemption of cancer through the morphologic detection of dysplastic cells, i.e. cells with a number of mitotic errors that are still below the threshold for cancer, followed by their surgical removal or eradication, has had an enormous impact on reducing the incidence of cancer of the uterine cervix, skin and colon worldwide, but this strategy has been much less successful with cancers in most other body sites. Inflammation is a relatively common occurrence in the epithelium and is far more common than cancer. A major current obstacle to the preemption of carcinoma is distinguishing morphologically atypical epithelial cells in the presence of inflammation (inflammatory atypia) that mimic dysplasia from morphologically atypical epithelial cells that are truly dysplastic. Formation of double stranded breaks in DNA (DSBs) is an accepted etiology for carcinoma and is, therefore, expected to be associated with dysplasia. Utilizing both algorithmic and artificial intelligence-based computer image analysis of IHC levels, we document the unexpected finding that phosphorylation of molecular markers associated with DSBs is consistently correlated with non-dysplastic iv inflammatory atypia in both squamous (oral cavity) and glandular (Barrett’s metaplasia) epithelia. Using these same image analysis methods, we further show that quantitative immunohistochemistry of the ratio of p-Chk2, a marker of DSB’s, and for mutational failure of the DNA damage repair pathway (p53) required for the proper response to DSBs can distinguish between inflammatory and dysplastic cellular atypia. The ability to use quantitative means to reliably distinguish between inflammatory and dysplastic atypia may facilitate the use of cytological screening for dysplasia to prevent cancer in numerous body sites
    corecore