837 research outputs found

    An update on the middle levels problem

    Full text link
    The middle levels problem is to find a Hamilton cycle in the middle levels, M_{2k+1}, of the Hasse diagram of B_{2k+1} (the partially ordered set of subsets of a 2k+1-element set ordered by inclusion). Previously, the best result was that M_{2k+1} is Hamiltonian for all positive k through k=15. In this note we announce that M_{33} and M_{35} have Hamilton cycles. The result was achieved by an algorithmic improvement that made it possible to find a Hamilton path in a reduced graph of complementary necklace pairs having 129,644,790 vertices, using a 64-bit personal computer.Comment: 11 pages, 5 figure

    Gray code order for Lyndon words

    No full text
    International audienceAt the 4th Conference on Combinatorics on Words, Christophe Reutenauer posed the question of whether the dual reflected order yields a Gray code on the Lyndon family. In this paper we give a positive answer. More precisely, we present an O(1)-average-time algorithm for generating length n binary pre-necklaces, necklaces and Lyndon words in Gray code order

    Partitioning de Bruijn Graphs into Fixed-Length Cycles for Robot Identification and Tracking

    Full text link
    We propose a new camera-based method of robot identification, tracking and orientation estimation. The system utilises coloured lights mounted in a circle around each robot to create unique colour sequences that are observed by a camera. The number of robots that can be uniquely identified is limited by the number of colours available, qq, the number of lights on each robot, kk, and the number of consecutive lights the camera can see, ℓ\ell. For a given set of parameters, we would like to maximise the number of robots that we can use. We model this as a combinatorial problem and show that it is equivalent to finding the maximum number of disjoint kk-cycles in the de Bruijn graph dB(q,ℓ)\text{dB}(q,\ell). We provide several existence results that give the maximum number of cycles in dB(q,ℓ)\text{dB}(q,\ell) in various cases. For example, we give an optimal solution when k=qℓ−1k=q^{\ell-1}. Another construction yields many cycles in larger de Bruijn graphs using cycles from smaller de Bruijn graphs: if dB(q,ℓ)\text{dB}(q,\ell) can be partitioned into kk-cycles, then dB(q,ℓ)\text{dB}(q,\ell) can be partitioned into tktk-cycles for any divisor tt of kk. The methods used are based on finite field algebra and the combinatorics of words.Comment: 16 pages, 4 figures. Accepted for publication in Discrete Applied Mathematic
    • …
    corecore