17 research outputs found

    GPU fast multipole method with lambda-dynamics features

    Get PDF
    A significant and computationally most demanding part of molecular dynamics simulations is the calculation of long-range electrostatic interactions. Such interactions can be evaluated directly by the naïve pairwise summation algorithm, which is a ubiquitous showcase example for the compute power of graphics processing units (GPUS). However, the pairwise summation has O(N^2) computational complexity for N interacting particles; thus, an approximation method with a better scaling is required. Today, the prevalent method for such approximation in the field is particle mesh Ewald (PME). PME takes advantage of fast Fourier transforms (FFTS) to approximate the solution efficiently. However, as the underlying FFTS require all-to-all communication between ranks, PME runs into a communication bottleneck. Such communication overhead is negligible only for a moderate parallelization. With increased parallelization, as needed for high-performance applications, the usage of PME becomes unprofitable. Another PME drawback is its inability to perform constant pH simulations efficiently. In such simulations, the protonation states of a protein are allowed to change dynamically during the simulation. The description of this process requires a separate evaluation of the energies for each protonation state. This can not be calculated efficiently with PME as the algorithm requires a repeated FFT for each state, which leads to a linear overhead with respect to the number of states. For a fast approximation of pairwise Coulombic interactions, which does not suffer from PME drawbacks, the Fast Multipole Method (FMM) has been implemented and fully parallelized with CUDA. To assure the optimal FMM performance for diverse MD systems multiple parallelization strategies have been developed. The algorithm has been efficiently incorporated into GROMACS and subsequently tested to determine the optimal FMM parameter set for MD simulations. Finally, the FMM has been incorporated into GROMACS to allow for out-of-the-box electrostatic calculations. The performance of the single-GPU FMM implementation, tested in GROMACS 2019, achieves about a third of highly optimized CUDA PME performance when simulating systems with uniform particle distributions. However, the FMM is expected to outperform PME at high parallelization because the FMM global communication overhead is minimal compared to that of PME. Further, the FMM has been enhanced to provide the energies of an arbitrary number of titratable sites as needed in the constant-pH method. The extension is not fully optimized yet, but the first results show the strength of the FMM for constant pH simulations. For a relatively large system with half a million particles and more than a hundred titratable sites, a straightforward approach to compute alternative energies requires the repetition of a simulation for each state of the sites. The FMM calculates all energy terms only a factor 1.5 slower than a single simulation step. Further improvements of the GPU implementation are expected to yield even more speedup compared to the actual implementation.2021-11-1

    Ray-traced radiative transfer on massively threaded architectures

    Get PDF
    In this thesis, I apply techniques from the field of computer graphics to ray tracing in astrophysical simulations, and introduce the grace software library. This is combined with an extant radiative transfer solver to produce a new package, taranis. It allows for fully-parallel particle updates via per-particle accumulation of rates, followed by a forward Euler integration step, and is manifestly photon-conserving. To my knowledge, taranis is the first ray-traced radiative transfer code to run on graphics processing units and target cosmological-scale smooth particle hydrodynamics (SPH) datasets. A significant optimization effort is undertaken in developing grace. Contrary to typical results in computer graphics, it is found that the bounding volume hierarchies (BVHs) used to accelerate the ray tracing procedure need not be of high quality; as a result, extremely fast BVH construction times are possible (< 0.02 microseconds per particle in an SPH dataset). I show that this exceeds the performance researchers might expect from CPU codes by at least an order of magnitude, and compares favourably to a state-of-the-art ray tracing solution. Similar results are found for the ray-tracing itself, where again techniques from computer graphics are examined for effectiveness with SPH datasets, and new optimizations proposed. For high per-source ray counts (≳ 104), grace can reduce ray tracing run times by up to two orders of magnitude compared to extant CPU solutions developed within the astrophysics community, and by a factor of a few compared to a state-of-the-art solution. taranis is shown to produce expected results in a suite of de facto cosmological radiative transfer tests cases. For some cases, it currently out-performs a serial, CPU-based alternative by a factor of a few. Unfortunately, for the most realistic test its performance is extremely poor, making the current taranis code unsuitable for cosmological radiative transfer. The primary reason for this failing is found to be a small minority of particles which always dominate the timestep criteria. Several plausible routes to mitigate this problem, while retaining parallelism, are put forward

    CHAOS: A multi-GPU PIC-DSMC solver for modeling gas and plasma flows

    Get PDF
    Numerical modeling of gas and plasma-surface interactions is critical to understanding the complex kinetic processes that dominate the extreme environments of planetary entry and in-space propulsion. However, simulations of these systems that evolve over multiple length- and time-scales is computationally expensive. Until recently, approximations were used to keep computational costs tenable, which in turn, increased the uncertainty in predictions and offered limited insights into the micro-scale flow properties and electron kinetics that dominate the macroscale processes. The need to perform high-fidelity physics-based gas and plasma simulations has led to the development of a three-dimensional, multi-GPU, Particle-in-cell (PIC)-direct simulation Monte Carlo (DSMC) solver called Cuda-based Hybrid Approach for Octree Simulations (CHAOS) that is presented in this work. This computational tool has been applied to candidate PICA-like TPS materials that consist of an irregular porous network of fibers to allow high-temperature boundary layer gases as well as pyrolysis by-products to penetrate in and flow out of the material. Quantifying bulk transport properties of these materials is essential for accurate prediction of the macroscopic ablation rate. The second application that CHAOS is being used with is the modeling of ion thruster plumes that consist of fast beam ions and slow neutrals that undergo charge-exchange (CEX) reactions to produce slow ions and fast neutrals. These slow CEX ions are strongly influenced by the electric field induced between the ion plume and the thruster surface, resulting in a backflow of ions towards the critical solar panel and thruster surfaces. Three backflow quantities, namely, ion flux, incidence angle, and incidence energy affect the macroscopic sputtering rate of the solar panel surfaces over extended operational times and are predicted from the PIC-DSMC simulations

    High Performance Scientific Computing in Applications with Direct Finite Element Simulation

    Get PDF
    To predict separated flow including stall of a full aircraft with Computational Fluid Dynamics (CFD) is considered one of the problems of the grand challenges to be solved by 2030, according to NASA [1]. The nonlinear Navier- Stokes equations provide the mathematical formulation for fluid flow in 3- dimensional spaces. However, classical solutions, existence, and uniqueness are still missing. Since brute-force computation is intractable, to perform predictive simulation for a full aircraft, one can use Direct Numerical Simulation (DNS); however, it is prohibitively expensive as it needs to resolve the turbulent scales of order Re4 . Considering other methods such as statistical average Reynolds’s Average Navier Stokes (RANS), spatial average Large Eddy Simulation (LES), and hybrid Detached Eddy Simulation (DES), which require less number of degrees of freedom. All of these methods have to be tuned to benchmark problems, and moreover, near the walls, the mesh has to be very fine to resolve boundary layers (which means the computational cost is very expensive). Above all, the results are sensitive to, e.g. explicit parameters in the method, the mesh, etc. As a resolution to the challenge, here we present the adaptive time- resolved Direct FEM Solution (DFS) methodology with numerical tripping, as a predictive, parameter-free family of methods for turbulent flow. We solved the JAXA Standard Model (JSM) aircraft model at realistic Reynolds number, presented as part of the High Lift Prediction Workshop 3. We predicted lift Cl within 5% error vs. experiment, drag Cd within 10% error and stall 1◦ within the angle of attack. The workshop identified a likely experimental error of order 10% for the drag results. The simulation is 10 times faster and cheaper when compared to traditional or existing CFD approaches. The efficiency mainly comes from the slip boundary condition that allows coarse meshes near walls, goal-oriented adaptive error control that refines the mesh only where needed and large time steps using a Schur-type fixed-point iteration method, without compromising the accuracy of the simulation results. As a follow-up, we were invited to the Fifth High Order CFD Workshop, where the approach was validated for a tandem sphere problem (low Reynolds number turbulent flow) wherein a second sphere is placed a certain distance downstream from a first sphere. The results capture the expected slipstream phenomenon, with appx. 2% error. A comparison with the higher-order frameworks Nek500 and PyFR was done. The PyFR framework has demonstrated high effectiveness for GPUs with an unstructured mesh, which is a hard problem in this field. This is achieved by an explicit time-stepping approach. Our study showed that our large time step approach enabled appx. 3 orders of magnitude larger time steps than the explicit time steps in PyFR, which made our method more effective for solving the whole problem. We also presented a generalization of DFS to variable density and validated against the well-established MARIN benchmark problem. The results show good agreement with experimental results in the form of pressure sensors. Later, we used this methodology to solve two applications in multiphase flow problems. One has to do with a flash rainwater storage tank (Bilbao water consortium), and the second is about designing a nozzle for 3D printing. In the flash rainwater storage tank, we predicted that the water height in the tank has a significant influence on how the flow behaves downstream of the tank door (valve). For the 3D printing, we developed an efficient design with the focused jet flow to prevent oxidation and heating at the tip of the nozzle during a melting process. Finally, we presented here the parallelism on multiple GPUs and the embedded system Kalray architecture. Almost all supercomputers today have heterogeneous architectures, such as CPU+GPU or other accelerators, and it is, therefore, essential to develop computational frameworks to take advantage of them. For multiple GPUs, we developed a stencil computation, applied to geological folds simulation. We explored halo computation and used CUDA streams to optimize computation and communication time. The resulting performance gain was 23% for four GPUs with Fermi architecture, and the corresponding improvement obtained on four Kepler GPUs were 47%. The Kalray architecture is designed to have low energy consumption. Here we tested the Jacobi method with different communication strategies. Additionally, visualization is a crucial area when we do scientific simulations. We developed an automated visualization framework, where we could see that task parallelization is more than 10 times faster than data parallelization. We have also used our DFS in the cloud computing setting to validate the simulation against the local cluster simulation. Finally, we recommend the easy pre-processing tool to support DFS simulation.La Caixa 201

    High performance scientific computing in applications with direct finite element simulation

    Get PDF
    xiii, 133 p.La predicción del flujo separado, incluida la pérdida de un avión completo mediantela dinámica de fluidos computacional (CFD) se considera uno de los grandes desaf¿¿os que seresolverán en 2030, según NASA. Las ecuaciones no lineales de Navier-Stokes proporcionan laformulación matemática para flujo de fluidos en espacios tridimensionales. Sin embargo, todaviafaltan soluciones clásicas, existencia y singularidad. Ya que el cálculo de la fuerza bruta esintratable para realizar simulación predictiva para un avión completo, uno puede usar la simulaciónnumérica directa (DNS); sin embargo, prohibitivamente caro ya que necesita resolver laturbulencia a escala de magnitud Re power (9/4). Considerando otros métodos como el estad¿¿sticopromedio Reynolds¿s Average Navier Stokes (RANS), spatial average Large Eddy Simulation(LES), y Hybrid Detached Eddy Simulation (DES), que requieren menos cantidad de grados delibertad. Todos estos métodos deben ajustarse a los problemas de referencia y, además, cerca las paredes, la malla tieneque ser muy fina para resolver las capas l¿¿mite (lo cual significa que el costo computacional es muycostoso). Por encima de todo, los resultados son sensibles a, por ejemplo, parámetros expl¿¿citos enel método, la malla, etc.Como una solución al desaf¿¿o, aqu¿¿ presentamos la adaptación Metodolog¿¿a de solución directa deFEM (DFS) con resolución numérica disparo, como una familia predictiva, libre de parámetros demétodos para flujo turbulento. Resolvimos el modelo de avión JAXA Standard Model (JSM) ennúmero realista de Reynolds, presentado como parte del High Lift Taller de predicción 3.Predijimos un aumento de Cl dentro de un error de 5 % vs experimento, arrastre Cd dentro de 10 %error y detenga 1 ¿ dentro del ángulo de ataque.El taller identificó un probable experimento error depedido 10 % para los resultados de arrastre. La simulación es 10 veces más rápido y más barato encomparación con CFD tradicional o existente enfoques. La eficiencia proviene principalmente dell¿¿mite de deslizamiento condición que permite mallas gruesas cerca de las paredes, orientada aobjetivos control de error adaptativo que refina la malla solo donde es necesario y grandes pasos detiempo utilizando un método de iteración de punto fijo tipo Schur, sin comprometer la precisión delos resultados de la simulación.También presentamos una generalización de DFS a densidad variable y validado contra el problemade referencia MARIN bien establecido. los Los resultados muestran un buen acuerdo con losresultados experimentales en forma de sensores de presión. Más tarde, usamos esta metodolog¿¿apara resolver dos aplicaciones en problemas de flujo multifásico. Uno tiene que ver con un flashtanque de almacenamiento de agua de lluvia (consorcio de agua de Bilbao), y el segundo es sobre eldiseño de una boquilla para impresión 3D. En el agua de lluvia tanque de almacenamiento,predijimos que la altura del agua en el tanque tiene un influencia significativa sobre cómo secomporta el flujo aguas abajo de la puerta del tanque (válvula). Para la impresión 3D,desarrollamos un diseño eficiente con El flujo de chorro enfocado para evitar la oxidación y elcalentamiento en la punta del boquilla durante un proceso de fusión.Finalmente, presentamos aqu¿¿ el paralelismo en múltiples GPU y el incrustado sistema dearquitectura Kalray. Casi todas las supercomputadoras de hoy tienen arquitecturas heterogéneas,1 See the UNESCO Internacional Standard nomenclature for fields of Science and Technologyacomo CPU+GPU u otros aceleradores, y, por lo tanto, es esencial desarrollar marcoscomputacionales para aprovecha de ellos. Como lo hemos visto antes, se comienza a desarrollar eseCFD más tarde en la década de 1060 cuando podemos tener poder computacional, por lo tanto, Esesencial utilizar y probar estos aceleradores para los cálculos de CFD. Las GPU tienen unaarquitectura diferente en comparación con las CPU tradicionales. Técnicamente, la GPU tienemuchos núcleos en comparación con las CPU que hacen de la GPU una buena opción para elcómputo paralelo.Para múltiples GPU, desarrollamos un cálculo de plantilla, aplicado a simulación depliegues geológicos. Exploramos la computación de halo y utilizamos Secuencias CUDA paraoptimizar el tiempo de computación y comunicación. La ganancia de rendimiento resultante fue de23 % para cuatro GPU con arquitectura Fermi, y la mejora correspondiente obtenida en cuatro LasGPU Kepler fueron de 47 %.This research was carried out at the Basque Center for Applied Mathematics (BCAM) within the CFD Computational Technology (CFDCT) and also at the School of Electrical Engineering and Computer Science(Royal Institue of Technology, Stockholm, Sweden). Which is suported by Fundacion Obra Social “la Caixa“, Severo Ochoa Excellence research centre 2014-2018 SEV-2013-0323, Severo Ochoa Excellence research centre 2018-2022 SEV-2017-0718, BERC program 2014-2017, BERC program 2018-2021, MSO4SC European project, Elkartek. This work has been performed using the computing infrastructure from SNIC (Swedish National Infrastructure for Computing)

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Ray Tracing Gems

    Get PDF
    This book is a must-have for anyone serious about rendering in real time. With the announcement of new ray tracing APIs and hardware to support them, developers can easily create real-time applications with ray tracing as a core component. As ray tracing on the GPU becomes faster, it will play a more central role in real-time rendering. Ray Tracing Gems provides key building blocks for developers of games, architectural applications, visualizations, and more. Experts in rendering share their knowledge by explaining everything from nitty-gritty techniques that will improve any ray tracer to mastery of the new capabilities of current and future hardware. What you'll learn: The latest ray tracing techniques for developing real-time applications in multiple domains Guidance, advice, and best practices for rendering applications with Microsoft DirectX Raytracing (DXR) How to implement high-performance graphics for interactive visualizations, games, simulations, and more Who this book is for: Developers who are looking to leverage the latest APIs and GPU technology for real-time rendering and ray tracing Students looking to learn about best practices in these areas Enthusiasts who want to understand and experiment with their new GPU
    corecore