2,476 research outputs found

    Machine learning -- based diffractive imaging with subwavelength resolution

    Full text link
    Far-field characterization of small objects is severely constrained by the diffraction limit. Existing tools achieving sub-diffraction resolution often utilize point-by-point image reconstruction via scanning or labelling. Here, we present a new imaging technique capable of fast and accurate characterization of two-dimensional structures with at least wavelength/25 resolution, based on a single far-field intensity measurement. Experimentally, we realized this technique resolving the smallest-available to us 180-nm-scale features with 532-nm laser light. A comprehensive analysis of machine learning algorithms was performed to gain insight into the learning process and to understand the flow of subwavelength information through the system. Image parameterization, suitable for diffractive configurations and highly tolerant to random noise was developed. The proposed technique can be applied to new characterization tools with high spatial resolution, fast data acquisition, and artificial intelligence, such as high-speed nanoscale metrology and quality control, and can be further developed to high-resolution spectroscop

    Passive Aeroelastic Tailoring

    Get PDF
    The Passive Aeroelastic Tailoring (PAT) project was tasked with investigating novel methods to achieve passive aeroelastic tailoring on high aspect ratio wings. The goal of the project was to identify structural designs or topologies that can improve performance and/or reduce structural weight for high-aspect ratio wings. This project considered two unique approaches, which were pursued in parallel: through-thickness topology optimization and composite tow-steering
    • …
    corecore